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Coherence is the only requirement in an optical field for producing interference, and

it has been used as a tool for characterizing statistical randomness in optical fields. Re-

cently, engineering coherence in the spatial degree of freedom has found several appli-

cations such as imaging, microscopy, optical communication, sensing, etc. However, the

existing experimental methods for generating and measuring spatial coherence lack con-

trol, accuracy and efficiency. Therefore, improved experimental methods are required for

practical applications.

In the past few decades, numerous experiments have verified that a two-photon opti-

cal field possesses a mysterious nonlocal correlation named quantum entanglement and

it causes strong measurement correlations between spatially separated photons in mul-

tiple bases that has no classical counterpart. Moreover, entanglement enables unique

tasks– teleportation and dense coding, especially spatial entanglement has found several

quantum information applications. However, spatial entanglement has not been exten-

sively explored in practical long-distance experiments due to the difficulties in the exist-

ing detection and manipulation techniques. This thesis develops experimental tools and

techniques for studying spatial coherence and entanglement in optical fields from three

aspects: generation, measurement, and application.

We begin with the study of spatial coherence in a spatially partially coherent field.

The spatial coherence in an optical field is quantified through either spatial cross-spectral
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density function or spatial coherence function. All existing techniques use a spatially

completely coherent field and external randomness for generating spatially partially co-

herent fields. As a result, the generation accuracy depends on the details of external

randomness. In contrast, our method uses the coherent mode representation of a spa-

tially partially coherent field and demonstrates the generation of propagation-invariant

spatially stationary field and Gaussian Schell Model (GSM) field. To demonstrate the ef-

fectiveness of this technique, we generate spatially partially coherent fields with custom-

designed spatial coherence functions with very good accuracy. Moreover, our technique

does not require any additional randomness.

Next, we develop a controllable and accurate method for measuring spatial coher-

ence in an optical field. The existing measurement schemes are unsuitable for measuring

two-dimensional spatial cross-spectral density function. We propose and demonstrate

an image inversion-based interferometric method for measuring two-dimensional cross-

spectral density function in a two-shot manner. Our method comprises a Michelson in-

terferometer with an additional converging lens in one of the arms, and the cross-spectral

density function of the input field gets encoded in the intensity distribution of the output

interferograms. Using this method, we report measurements of several lab-synthesized

structured two-dimensional cross-spectral density functions with very good agreement

with theory.

We then present an experimental technique for measuring position-momentum Ein-

stein Podolsky Rosen (EPR) correlation. The EPR correlation measurement is a widely

used experimental tool for certifying position-momentum entanglement. The accurate

measurement of EPR correlation enhances the performance of many applications. How-

ever, all existing techniques for measuring the EPR correlation involve coincidence de-

tection and thus suffer from issues that result in less accurate measurements. We propose

and demonstrate a measurement scheme that does not require coincidence detection. We

show that if a pure two-photon state satisfies a certain set of conditions, then the EPR

correlation can be obtained by doing intensity measurements on one of the photons. We

experimentally demonstrate this technique for the pure two-photon field produced by
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type-I spontaneous parametric down-conversion (SPDC) and report the most accurate

measurement of position-momentum EPR correlation so far.

We next demonstrate the utility of spatial coherence in imaging and free-space com-

munication through random media. It is known that a spatially partially coherent light

field performs better imaging than a spatially coherent field. The image quality increases

as the spatial coherence length of the field becomes smaller. The spatial coherence length

of most spatially partially coherent fields increases upon propagation. As a result, the

field produces progressively decreasing image quality at subsequent transverse planes.

We address this issue by engineering the propagation of spatial coherence of the illumi-

nating field. Using a spatially partially coherent field with propagation-invariant spatial

coherence function, we report imaging of different transverse planes with equal quality

over 40 cm. Furthermore, we generate a spatially partially coherent field that can be tai-

lored to have the minimum possible spatial coherence length at the plane of the object to

be imaged. Using this source, we demonstrate imaging of spatially separated transverse

planes with the maximum possible image quality. Next, we demonstrate the implication

of spatially partially coherent fields with structured cross-spectral density functions in

free-space communication. Recently, structured transverse intensity profiles of spatially

coherent fields have been used for encoding information in free-space communication.

However, in the presence of turbulence, the intensity structures of such fields start to de-

grade due to the perfect spatial coherence of the field, which makes retrieval of informa-

tion very challenging. We address this issue by demonstrating the structural robustness

of spatially partially coherent fields in the presence of turbulence. We show that for a

given turbulence strength, the structural robustness of cross-spectral density functions

increases as we decrease the spatial coherence length of the field.

Lastly, we present the revival of spatial entanglement in the two-photon SPDC field

through propagation. Spatial entanglement has been extensively studied in position-

momentum bases due to its applicability in quantum information science; however, it

is not suitable for applications involving long-distance propagation. This is because the

entanglement starts decaying when the photons propagate away from their source and
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the effect becomes even more pronounced in turbulence. Here we explore the propaga-

tion of spatial entanglement in angle-orbital angular momentum (OAM) bases and show

that the angle-OAM entanglement exhibits remarkably different behaviour. As with the

position-momentum case, initially, the angle-OAM entanglement decays with propaga-

tion, but as the photons continue to travel further from the source, the photons regain

their strongly correlated behaviour, and the entanglement returns. We theoretically and

experimentally demonstrate this behaviour and show that entanglement returns even in

the presence of strong turbulence. The only effect of turbulence is to increase the propa-

gation distance for revival, but once revived, the two photons remain entangled up to an

arbitrary propagation distance.
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Chapter 1

Background

1.1 Introduction

Correlation in optical fields exhibits many interesting physical phenomena, and the in-

terference effect is one of its natural manifestations. In classical optics, if the interfering

electric field vibrations are coherent, then it causes interference [1–3]. On the other hand,

in quantum optical fields, the indistinguishability of the interfering alternatives leads to

interference [4–12]. It has been shown that the degree of indistinguishability of the inter-

fering alternatives is equal to the degree of coherence between them [13]. In other words,

one observes interference as long as the interfering alternatives remain coherent. Thus,

coherence is the intrinsic correlation in classical and quantum optical fields that enables

the interference effect. Coherence has been extensively studied through various interfer-

ence experiments for understanding statistical fluctuations in optical fields. A rigorous

statistical theory has been formulated by Zernike [3], Wolf [2,14–16], Glauber [17,18], and

other researchers [19, 20] for studying the quantification and propagation of coherence

with both classical and quantum mechanical treatments. In recent times, spatial coher-

ence in an optical field has offered advantages in many real-world applications such as

imaging through random media [21–23], microscopy [24,25], optical coherence tomogra-
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phy (OCT) [26], sensing [27], particle trapping [28], etc. Therefore, it is important to have

efficient techniques for generating and measuring spatial coherence that can be imple-

mented in practical applications.

In the past few decades, interference experiments with two-photon fields [9, 29–32]

have become an important research area for understanding the mysterious correlation in

such optical fields called entanglement [33–35]. It refers to the inseparability in the global

state, which implies that the global state is not equal to the tensor product of the states

of individual photon fields. Moreover, this mysterious nonlocal correlation enables new

quantum information protocols– teleportation [36] and superdense coding [37], which are

impossible to perform without entanglement. Spontaneous parametric down-conversion

(SPDC) is the most widely used source for generating entangled two-photon fields in po-

larization [38], position-momentum [39], angle-orbital angular momentum (OAM) [40],

and time-energy [41] degrees of freedom. The spatial entanglement in SPDC two-photon

field has shown promising utility in many applications such as quantum imaging [42–46],

quantum holography [47–49], quantum metrology [50], quantum information process-

ing [51, 52], quantum secure communication [51, 53, 54], etc. However, limitations in the

existing detection and manipulation techniques restrict the experimental implications of

spatial entanglement in realistic situations including long-distance propagation in the

presence of turbulence and noise. Thus, efficient and controllable experimental tools are

required for manipulating and detecting spatial entanglement from the prospect of many

quantum information processing applications. This thesis focuses on developing experi-

mental tools for studying spatial coherence and entanglement in optical fields. We divide

this thesis into three research themes: generation of spatial coherence, measurement of

spatial coherence and entanglement, and application of spatial coherence and entangle-

ment.

The contents are organized in the following manner. In sections 1.2 and 1.3, we

introduce the concept of spatial coherence in an optical field and describe the free-space

propagation of spatial coherence, respectively. The section 1.4 reviews the coherent mode

representation of an optical field. In section 1.5, we discuss Wigner distribution function
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for an optical field. In section 1.6, we introduce the concept of spatial entanglement. In

sections 1.7 and 1.8, we introduce the basics of nonlinear optics and describe the SPDC

process respectively. In section 1.9, we summarize and outline the contents of this thesis.

1.2 Spatial coherence in optical fields

In this section, we introduce the concept of spatial coherence with both classical and

single-photon fields. We formulate the theory of spatial coherence in space-frequency

domain [15].

1.2.1 Classical field

In the context of classical optical fields, we consider light as a classical wave. We describe

the concept of spatial coherence through Young’s double slit interference experiment.

Figure 1.1 shows the schematic of a Young’s double slit interferometer. Consider E(r1, ω)

and E(r2, ω) denote electric field amplitudes at spatial points r1 ≡ (ρ1, z) and r1 ≡ (ρ2, z)

at frequency ω respectively. Figure 1.1 shows that the light fields coming from r1 and r2

overlap at the detection point rd at frequency ω, where rd ≡ (ρd, zd). We note that the

fields at the detection plane and at the slit plane have the same frequency ω and we are

interested in the spatial correlation between the two interfering fields. For the sake of

simplicity, we drop the frequency argument from the electric field representation in our

further analysis. We now write the electric field E(ρd; zd) at the detection point (ρd; zd) is

given by

E(ρd; zd; ω) = k1E(ρ1; z)e−ik0d1 + k2E(ρ2; z)e−ik0d2 , (1.1)

where k1 and k2 are complex constants, depend on the size and geometry of the slits,

k0 is the central wave-vector magnitude, d1,2 = |ρd − ρ1,2|. The corresponding intensity
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distribution I(ρd; zd) is given by

I(ρd; zd) = 〈E∗(ρd; zd)E(ρd; zd)〉e = |k1|2〈E∗(ρ1; z)E(ρ1; z)〉e + |k2|2〈E∗(ρ2; z)E(ρ2; z)〉e

+ k∗1k2〈E∗(ρ1; z)E(ρ2; z)〉ee
ik0(d2−d1) + c.c, (1.2)

where 〈....〉e represents ensemble average over large number of realizations of the field.

The terms I(ρ1; z) = 〈E∗(ρ1; z)E(ρ1; z)〉e and I(ρ2; z) = 〈E∗(ρ2; z)E(ρ2; z)〉e are the inten-

sities at first and second slits respectively. The term W(ρ1,ρ2; z) = 〈E∗(ρ1; z)E(ρ2; z)〉e

represents the first order spatial correlation function or spatial cross-spectral density

function [15] of the input field at z = z plane. The above Eq. (1.2) takes the form

I(ρd; zd) = |k1|2 I(ρ1; z) + |k2|2 I(ρ2; z) + 2|k1||k2||W(ρ1,ρ2; z)| cos(φd + φ). (1.3)

Here φd = k0d, d = d2 − d1, φ = φW + φk, φW = arg[W(ρ1 ,ρ2; z)], φk = arg[k∗1 k2]. This

is the general intensity expression for Young’s double slit interferogram. The last term

in I(ρd; zd) is responsible for producing the interfernce fringes and it depends on the

the cross-spectral density function W(ρ1,ρ2; z) of the input field at the double slit plane.

We now normalize the cross-spectral density function and define a new quantity: spatial

degree of coherence function or spatial coherence function and it is given by [15]

µ(ρ1,ρ2; z) =
|W(ρ1,ρ2; z)|

√

I(ρ1; z)I(ρ2; z)
. (1.4)

z=z z=z
d

½
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I(½
d
) 10

½
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Source ¢½

FIGURE 1.1: Schematic of a Young double-slit interferometer for illustrating spatial coherence

between ρ1 and ρ2.
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The above Eq. (1.4) implies that 0 6 µ(ρ1,ρ2; z) 6 1. We rewrite the Eq. (1.3) as

I(ρd; zd) = |k1|2 I(ρ1; z) + |k2|2 I(ρ2; z) + 2|k1||k2|
√

I(ρ1; z)I(ρ2; z)µ(ρ1,ρ2; z) cos(φd + φ).

(1.5)

The degree of interference effect is quantified through the fringe visibility. The visibility

V is given by

V =
Imax − Imin

Imax + Imin
=

2|k1||k2|
√

I(ρ1; z)I(ρ2; z)

|k1|2 I(ρ1; z) + |k2|2 I(ρ2; z)
µ(ρ1,ρ2; z). (1.6)

This shows that the fringe visibility relies on the degree of coherence between the spatial

points (ρ1; z) and (ρ2; z). We assume |k1| = |k2| and I(ρ1; z) = I(ρ2; z). Most of the

experiments follow this assumption. In this thesis, we work under the above assumption.

The above visibility expression becomes

V = µ(ρ1,ρ2; z) = µ(∆ρ; z). (1.7)

The ability of interference for light fields coming from ρ1 and ρ2 is solely decided by the

degree of coherence between them. The visibility depends on the separation ∆ρ = |ρ1 −

ρ2|. By analyzing the visibility for different ∆ρ we get the profile of the spatial coherence

function µ(∆ρ; z) and the width of that is defined as the spatial coherence length σc. Now,

we catagorize different light sources by looking at the functional profile of µ(∆ρ; z).

Figures 1.2(a),(b), and (c) depict Young’s double-slit fringes at different slit separation

for spatially perfectly coherent source, spatially partially coherent source, and spatially

incoherent source, respectively. Figure 1.2(d) illustrates µ(∆ρ; z) as a function of ∆ρ for a

spatially perfectly coherent source and it shows that the µ(∆ρ; z) remains one at different

slit separations. On the other hand, for a spatially partially coherent source, the visibility

decreases with the increase in the slit separation ∆ρ, and it is illustrated in Fig. 1.2(e),

where µ(∆ρ; z) monotonically decays as a function of ∆ρ. For a spatially incoherent

source, no interference fringe is observed. Figures 1.2(d),(e) and (f) show that the spa-

tial coherence length σc is infinite, finite, and almost zero for spatially perfectly coherent
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FIGURE 1.2: (a), (b), and (c) Depict the Young double-slit fringes for spatially perfectly coherent

source, spatially partially coherent source and spatially incoherent source respectively. (d), (e),

and (f) Depict µ(∆ρ) as a function of ∆ρ for spatially perfectly coherent source, spatially partially

coherent source and spatially incoherent source respectively.

source, spatially partially coherent source, and spatially incoherent source, respectively.

This analysis clearly shows that the interference signature gets washed out when the sep-

aration between the interfering fields ∆ρ exceeds the spatial coherence length σc.

1.2.2 Single-photon field

In this section, we revisit the Young’s double slit interference experiment with quantum

mechanical treatment for understanding spatial coherence in single-photon field. We first

briefly review the concept of field operators. In the quantum theory of optical coher-
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ence [17], we quantize the electromagnetic field and represent the electric field amplitude

V(r, t) by a Hermitian operator V̂(r, t), the state of electromagnetic field is described by

photon number. The field operator is written as [17]

V̂(r, t) = V̂(+)(r, t) + V̂(−)(r, t), (1.8)

where, V̂(+)(r, t) and V̂(−)(r, t) are the positive and negative field operators, respec-

tively. The operator V̂(+)(r, t) absorbs a photon at (r, t), whereas the operator V̂(−)(r, t)

emits a photon at (r, t). The quantized electric field is expressed in the plane-wave basis

in the form [17]

V̂(r, t) = ∑
k

i

[

h̄ωk

2ǫ0L

]
1
2

âk(t)e
i(ωkt−k·r) − ∑

k

i

[

h̄ωk

2ǫ0L

]
1
2

â†
k(t)e

i(ωkt−k·r). (1.9)

Here âk(t) and â†
k(t) are the annihilation and creation field operators respectively, for the

plane-wave mode k and frequency mode ωk, L3 represents the quantization volume.

We now use the Fourier relation between time and frequency basis to write the field

operator in the frequency basis

Ê(r, ω) =
1

2π

ˆ ∞

−∞

V̂(r, t)eiωtdt = Ê(+)(r, ω) + Ê(−)(r, ω), (1.10)

where

Ê(+)(r, ω) =
1

2π

ˆ ∞

−∞

V̂(+)(r, t)eiωtdt, Ê(−)(r, ω) =
1

2π

ˆ ∞

−∞

V̂(−)(r, t)eiωtdt. (1.11)

The operators Ê(+)(r, ω) and Ê(−)(r, ω) absorbs and emits a photon respectively, at spa-

tial point r ≡ (ρ; z) and frequency ω.

Consider |ψ〉 describes the normalized state of a single-photon field. We note that for

quantum fields, position and momentum are parameters or variables, not operators. We

have discussed above in this case, one detects the photon at a position or momentum

mode through the annihilation and creation field operators. For example, the state |ψ〉
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FIGURE 1.3: (a) Depicts the Young’s double slit interference for a single photon source. (b) Illus-

trates the two interfering alternatives. The photon reaches the detector either through the slit at

ρ1 in alternative-1 or through the slit at ρ2 in alternative-2.

gets detected at the transverse point x through field operators Ê(+)(x) and Ê(−)(x). We

express |ψ〉 in the position basis as

|ψ〉 = A

ˆ

ψ(x)Ê(−)(x)|vac〉dx (1.12)

where A is a constant. The probability distribution of detecting the photon at x is shown

to be proportional to |ψ(x)|2. In the recent literature on quantum optics [45, 55–58], the

function ψ(x) in termed as position wavefunction and we have adopted this terminology

throughout this thesis.

Figure 1.3(a) shows Young’s double-slit interferometer with a single-photon source;

the emitted photon goes through one of the slits to reach the detector kept at the spatial

point rd ≡ (ρd; zd) and at frequency ω. Figure 1.3(b) illustrates the two spatial alterna-

tives through which the photon can reach the detector. We now show that the coherence

between these two spatial alternatives causes interference.

Like section 1.2.1, here also we focus on the spatial correlation between interfering

alternatives at the detection frequency ω. For the sake of consistency, we drop the fre-

quency argument in the field operators. The field operator Ê(+)(ρd; zd) at the detection

point (ρd; zd) is given by

Ê(+)(ρd; zd) = k1Ê(+)(ρ1; z)eik0d1 + k2Ê(+)(ρ2; z)eik0d2 , (1.13)
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where Ê(+)(ρ1; z) and Ê(+)(ρ2; z) are the positive field operators for the slits at (ρ1; z) and

(ρ2; z) respectively, d1,2 = |ρd − ρ1,2|, k0 represents the magnitude of the wave-vector, k1

and k2 are the complex constants. The single-photon counting rate at the spatial point

(ρd; zd) is given by [17]

P(ρd; zd) = 〈〈ψ|Ê(−)(ρd; zd)Ê
(+)(ρd; zd)|ψ〉〉e

= |k1|2〈〈ψ|Ê(−)(ρ1; z)Ê(+)(ρ1; z)|ψ〉〉e + |k2|2〈〈ψ|Ê(−)(ρ2; z)Ê(+)(ρ2; z)|ψ〉〉e

+ k∗1k2〈〈ψ|Ê(−)(ρ1; z)Ê(+)(ρ2; z)|ψ〉〉eeik0(d2−d1) + c.c, (1.14)

where 〈...〉e respresents the ensemble average over many realizations of single-photon

state. From Glauber’s quantum theory of coherence [17], P(ρ1; z) = 〈〈ψ|Ê(−)(ρ1; z)Ê(+)(ρ1,

z)|ψ〉〉e and P(ρ2; z) = 〈〈ψ|Ê(−)(ρ2; z)Ê(+)(ρ2; z)|ψ〉〉e are the counting rate associated

with the alternative-1 and alternative-2 respectively. W(ρ1,ρ2; z) = 〈〈ψ|Ê(−)(ρ1; z)Ê(+)(ρ2

; z)|ψ〉〉e represents the first order correlation function at the double slit plane and we re-

fer it as the spatial cross-spectral density function of the single-photon field. We define

the spatial coherence function as µ(ρ1,ρ2; z) = |W(ρ1,ρ2; z)|/
√

P(ρ1; z)P(ρ2; z) and it

quantifies the coherence between two spatial alternatives. The Eq. (1.14) takes the form

P(ρd; zd) = |k1|2P(ρ1; z) + |k2|2P(ρ2; z) + 2|k1||k2|
√

P(ρ1; z)P(ρ2; z)µ(ρ1,ρ2; z)

× cos(φd + φ). (1.15)

Here φd = k0d, d = d2 − d1, φ = φW + φk, φW = arg[W], and φk = arg[k∗1 k2]. The

third term in the above expression causes interference, which relies on coherence be-

tween two spatial interfering alternatives. The interference effect for a single-photon field

is interpreted as the interference of two spatial alternatives associated with the photon,

in contrast to the interpretation of classical interference. However, we note that the ex-

pression of counting rate P(ρd; zd) in the above Eq. (1.15) is analogous to the transverse

intensity distribution I(ρd; zd) in Eq. (1.5) for a classical field. Furthermore, under the

assumption P(ρ1; z) = P(ρ2; z) and |k1| = |k2|, the visibility V of interference fringes

becomes equal to the degree of coherence µ(ρ1,ρ2; z) between two spatial alternatives.
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This implies that the characteristics of spatial cross-spectral density function W(ρ1,ρ2; z)

or coherence function µ(ρ1,ρ2; z) remain equivalent in both classical field and quantum

single-photon field [19,59–61] and one can define spatially completely coherent, partially

coherent and incoherent single-photon field parallel to that of classical field. From now

on, we will consider spatial coherence in the classical field and spatial coherence in the

single-photon field as a single concept. We will refer to this concept as spatial coherence

in an optical field. So far our analysis has shown that the classical treatment reproduces

the result of an interference experiment with a single-photon field. However, the classical

treatment has failed to reproduce the results of two-photon or multiphoton quantum in-

terference effects that involve coincidence detection or multi-fold detection respectively,

such as Hong-Ou-Mandel [8], Franson [9, 30], etc [62, 63]. We note that the above men-

tioned coincidence based interference experiments are beyond the scope of this thesis.

In chapter 2 and 3, we present our experimental techniques for generating and mea-

suring spatial coherence in a spatially partially coherent optical field respectively. Chap-

ter 5 demonstrates the applications of spatial coherence in imaging and free-space com-

munication.

1.3 Propagation of spatial coherence

z

z=0 z=z

x

yy'

x'

½
1

½
2

½
1

½
2

FIGURE 1.4: Illustrating the propagation of a planar spatially partially coherent source kept at

z = 0.
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Here we explore propagation of spatial cross-spectral density function in an optical

field produced by a planar monochromatic spatially partially coherent source kept at

z = 0 and how the cross-spectral density function W(ρ1,ρ2; z) at any propagation dis-

tance z is connected to the cross-spectral density function W(ρ′

1,ρ′

2; z = 0) at the source

plane. Consider E(ρ; z) represents the electric field at the location (ρ; z) and it satisfies

the Helmholtz equation

∇2E(ρ; z) + k2E(ρ; z) = 0, (1.16)

where ∇2 = ∂2

∂2x
+ ∂2

∂2y
+ ∂2

∂2z
, ρ ≡ (x, y). We express the solution E(ρ; z) of the above

Eq. (1.16) for a propagating wave in +z−direction in the transverse wave-vector basis in

the following manner (see section 5.6.2 in Ref. [2])

E(ρ; z) = C

ˆ

U(q)eiq·ρ+ikzzdq, (1.17)

where q ≡ (qx, qy) is a transverse wave-vector or plane wave mode, U(q) denotes the

electric field in the transverse wave-vector basis, and C is a constant. We assume q2
x +

q2
y << k2

z and it is known as paraxial approximation (see section 7.4 in Ref. [64]). Under

this assumption, kz = k0 − q2

2k0
, k0 = |k| =

√

q2 + k2
z. The Eq. (1.17) modified as

E(ρ; z) = Ceik0z

ˆ

U(q)eiq·ρe
−i

q2z
2k0 dq. (1.18)

We next find the propagation of spatial cross-spectral density function of a partially co-

herent source, by taking a ensemble average over many realization of E(ρ; z) and it is

expressed as (see section 5.6.3 in Ref. [2])

W(ρ1,ρ2; z) = 〈E∗(ρ1; z)E(ρ2; z)〉e = C2

¨

A(q1, q2)e
i(q2 ·ρ2−q1·ρ1)e

−i z
2k0

(q2
2−q2

1)dq1dq2,

(1.19)

where A(q1, q2) = 〈U∗(q1)U(q2)〉e is the angular cross-spectral density of the source. The

Eq. (1.19) connects the cross-spectral density function W(ρ1,ρ2; z) at z = z with the source

angular cross-spectral density function A(q1, q2). From the Eq. (1.19), the cross-spectral
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density function W(ρ′
1,ρ′

2) at z = 0 is given by

W(ρ′
1,ρ′

2) = C2

¨

A(q1, q2)e
i(q2 ·ρ′

2−q1·ρ′
1)dq1dq2. (1.20)

This shows that W(ρ′
1,ρ′

2) and A(q1, q2) are connected by Fourier transformation. We

use this relation and rewrite the Eq. (1.19) in the following form

W(ρ1,ρ2; z) =
1

(λ0z)2
ei

k0
2z (ρ

2
2−ρ2

1)
¨

W(ρ′
1,ρ′

2)e
i

k0
2z (ρ

′2
2 −ρ′2

1 )e−i
k0
z (ρ2·ρ′

2−ρ1·ρ′
1)dρ′

1dρ′
2. (1.21)

This is the general expression for the spatial cross-spectral density function W(ρ1,ρ2; z)

of a spatially partially coherent source at any z = z plane. It expresses the cross-spectral

density function W(ρ1,ρ2; z) at propagation distance z in terms of cross-spectral density

function W(ρ′
1,ρ′

2) at z = 0. Using Eq. (1.21), we analyse how the spatial coherence σc

changes with propagation distance z for the following realistic sources.

1.3.1 Primary spatially incoherent source

Consider a planar spatially incoherent source is kept at z = 0. The cross-spectral density

function at z = 0 is given by W(ρ′
1,ρ′

2) =
λ2

0
π I(ρ′

1)δ(ρ
′
1 − ρ′

2) (see Ref [20], section 5.5.4),

where λ0 is the central wavelength and I(ρ′
1) represents the transverse intensity distribu-

tion of the source at z = 0. We now propagate W(ρ′
1,ρ′

2) from z = 0 to z = z plane using

the Eq. (1.21) and the cross-spectral density function W(ρ1,ρ2; z) at z = z is given by

W(ρ1,ρ2; z) =
K

z2
ei

k0
2z (ρ

2
2−ρ2

1)
ˆ

I(ρ′
1)e

i
k0
z ρ′

1·(ρ2−ρ1)dρ′
1. (1.22)

All constants are absorbed in K. We next write the spatial coherence function µ(ρ1,ρ2; z)

as

µ(ρ1,ρ2; z) =

ˆ

I(ρ′
1)e

−i
k0
z ρ′

1·(ρ2−ρ1)dρ′
1. (1.23)

The spatial coherence function µ(ρ1,ρ2; z) is the Fourier transform of the source trans-

verse intensity distribution I(ρ′
1). It is commonly known as van Cittert-Zernike theo-



1.3 Propagation of spatial coherence 13

rem [2, 65]. We consider the intensity distrbition to be I(ρ′
1) = exp

(

− ρ′2
1

2a2

)

, a denotes the

dimension of the source. The corresponding spatial coherence function is given by

µ(∆ρ; z) = A exp

[

− ∆ρ2

2σc(z)2

]

, (1.24)

where σc(z) = z/k0a = zλ0/2πa is the spatial coherence length at propagation distance

z. We now plot σc(z) as a function of z in Fig. 1.5 (solid curve) and it shows that σc mono-

tonically increases upon the propagation. This implies that even an incoherent source

produces finite spatial coherence length upon propagation. The example of such sources

are sunlight, light emitting diode (LED), etc.

1.3.2 Gaussian Schell model source

Gaussian schell model (GSM) source is one of the most widely used model of spatially

partially coherence source in the literature [2, 66–69]. A GSM source is characterized by

a Gaussian transverse intensity profile and a Gaussian spatial coherence function. The

cross-spectral density function of GSM source at z = 0 plane is given by W(ρ′
1,ρ′

2) =
√

I(ρ′
1)I(ρ′

2)µ(ρ
′
2 − ρ′

1) (Sec.5.6.2 in Ref. [2]), where I(ρ′) = exp
(

− ρ′2

2w2
0

)

, and µ(ρ′
2 −

ρ′
1) = µ(∆ρ′) = exp

(

−∆ρ′2

2σ2
c

)

. w0 and σc are the beam size and spatial coherence length

respectively at z = 0. Now, by substituting W(ρ′
1,ρ′

2) in Eq. (1.21), one can show that (see

0 20 40 60 80 100
0.0

0.4

0.8

1.2

¾
c(
z
)  (

m
m

)

z  (cm)

GSM source

Primary spatially incoherent source 

FIGURE 1.5: Spatial coherence length σc(z) as a function of z for spatially incoherent source (red

solid curve) and GSM source (blue solid curve). Here, a = 150 µm, λ0 = 632 nm, w0 = 150 µm,

and σc = 0.02 µm
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Sec.5.6.4 in Ref. [2])

W(ρ1,ρ2; z) = N exp

[

−i
k0

2R(z)
(ρ2

2 − ρ2
1)

]

exp

[

−ρ2
1 + ρ2

2

4w(z)2

]

exp

[

− ∆ρ2

2σc(z)2

]

, (1.25)

where w(z) = w0

√

1 +
(

z
k0w0δ

)2
and σc(z) = σc

√

1 +
(

z
k0w0δ

)2
are the beam size and

spatial coherence length respectively, at z = z plane. We plot σc(z) as a function of z in

Fig. 1.5 (dashed curve) and it shows that σc(z) monotonically increases upon propaga-

tion. These two examples show that the spatial coherence length of a spatially partially

coherent field increases upon propagation. In chapters 2 and 5, we will propose and

demonstrate the generation of spatially partially coherent fields having spatial coherence

length that remains constant and decreases upon propagation.

1.4 Coherent mode representation

A spatially perfectly coherent field is represented at a transverse point ρ by the electric

field E(ρ), whereas a spatially partially coherent field is represented by cross-spectral

density function W(ρ1,ρ2) = 〈E∗(ρ1)E(ρ2)〉e. The coherent mode representation is a

method introduced by Wolf [15] for expressing the cross-spectral density function W(ρ1,ρ2)

as an incoherent mixture of coherent modes and a coherent mode represents a spatially

perfectly coherent field. A cross-spectral density function must satisfy the following con-

ditions in order to have its coherent mode representation [15, 70].

• W(ρ1,ρ2) must be square integrable over the domain D, that is,
˜

D |W(ρ1,ρ2)|2dρ1

dρ2.

• W(ρ1,ρ2) must be Hermitian, that is, W∗(ρ1,ρ2) = W(ρ2,ρ1).

• W(ρ1,ρ2) must be a definite non-zero function, that is,
˜

D f ∗(ρ1) f ∗(ρ1)W(ρ1,ρ2)dρ1

dρ2, where f (ρ) is a square integrable function.
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Under the above conditions W(ρ1,ρ2) becomes a Hilbert-Schmidt kernel. According to

Mercer theorem (see section 2.5.1 in Ref. [70]), we write the cross-spectral density function

W(ρ1,ρ2) in the following form [15, 70]

W(ρ1,ρ2) = ∑
n

InE∗
n(ρ1)En(ρ2), (1.26)

where n represents the mode index, En(ρ) are the eigenmodes and In are the eigenvalues

of the following integral equation

ˆ

W(ρ1,ρ2)En(ρ1)dρ1 = InEn(ρ2). (1.27)

We note that Eq. (1.26) describes a partially coherent field as an incoherent mixture of spa-

tially completely coherent eigenmodes En(ρ) with proportions given by their correspond-

ing eigenvalues In. The first condition implies the sum of all eigen values ∑n In < ∞ is

finite. The second and third conditions ensure that all In are real and non-negative, re-

spectively. The Eq.( 1.26) can be written as a sum of cross-spectral density function of

coherent eigenmodes Wn(ρ1,ρ2) = E∗
n(ρ1)En(ρ2) in the following way

W(ρ1,ρ2) = ∑
n

InWn(ρ1,ρ2). (1.28)

For a completely coherent field the coherent mode representation contains only one term,

whereas for a completely incoherent field the coherent mode representation contains an

infinite number of terms. The Eq. (1.28) implies that for a given W(ρ1,ρ2), atleast one

basis will exist in which the it can be represented as an incoherent mixture of coherent

modes that are spatially perfectly coherent. We note that the eigenmodes are orthonor-

mal, that is,
˜

E∗
n(ρ1)Em(ρ2)dρ1dρ2 = δmn. Now if the W(ρ1,ρ2) has a coherent mode

representation in a continuous variable basis, then the Eq.( 1.26) takes the form [15, 70]

W(ρ1,ρ2) =

ˆ

I(k)Wk(ρ1,ρ2)dk, (1.29)

where k is the mode index in the continuous variable basis. In chapter 2, we propose and
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demonstrate a new experimental technique for generating spatially partially coherent

fields by using their coherent mode representation.

1.5 Wigner Distribution Function

So far we have used the cross-spectral density function for characterizing spatial cor-

relation or coherence in an optical field. Here, we introduce an alternative approach

for characterizing the same through a distribution function named Wigner distribution

function [71–74]. The Wigner distribution function F(ρ, q) resepresnt an optical field

simultaneously in transverse position ρ and transverse wave-vector q bases. The rela-

tion between Wigner distribution function and cross-spectral density function is given

by [73, 74]

F(ρ, q) = A

ˆ

W(ρ+ ρ′/2,ρ− ρ′/2) exp(−iq · ρ′)dρ′. (1.30)

The intensity distribution functions I(ρ) and I(q) in transverse position and wave-vector

bases are given by [73, 74]

I(ρ) =

ˆ

F(ρ, q)dq, I(q) =

ˆ

F(ρ, q)dρ. (1.31)

For a single-photon field the Wigner distribution function F(ρ,p) represents the joint

probability distribution of the photon in position ρ and momentum p bases. The position

and momentum probability distribution function of a single-photon field are given by

P(ρ) =

ˆ

F(ρ,p)dp, P(p) =

ˆ

F(ρ,p)dρ. (1.32)

The Eq. (1.30) for a single-photon field is written as [75]

F(ρ,p) = A/h̄

ˆ

W(ρ+ ρ′/2,ρ− ρ′/2) exp [−ip · ρ′/h̄dρ′] . (1.33)

We note that inverting the Eqs. (1.30) and (1.33), one can extract the spatial coher-
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ence in classical and signgle-photon optical fields through Wigner function measure-

ments [76].

1.6 Spatial entanglement and Einstein-Podolsky-Rosen (EPR) cor-

relation

Entanglement is a strange correlation witnessed in a multipartite quantum system. If

the global state of a multipartite system is not equivalent to the tensor product of in-

dividual subsystem states, then it implies that the subsystems are entangled. Mathe-

matically, it is represented by |Ψ〉 6= |u〉1 ⊗ |v〉2, where |Ψ〉 represents the global state,

|u〉1 and |v〉2 denote the state of subsystem 1 and 2 respectively. Entanglement displays

strong measurement correlations between spatially separated subsystems in conjugate

bases. We now describe spatial entanglement in position-momentum and angle-OAM

bases through Einstein-Podolsky-Rosen (EPR) correlation measurement.

p=p
0

plane-wave mode

(a)

x=x
0

point source

(b)

FIGURE 1.6: Illustrates (a) plane-wave mode and (b) a diffracting point source.

We first review the position-momentum Heisenberg uncertainty relation in a single-

particle system. Consider an example: a single-particle state is described by a plane-wave

mode and it is illustrated in Fig. 1.6(a). The corresponding position wavefunction ψ(x)

and momentum wavefunction ψ(p) are given by

ψ(x) = Aeip0x/h̄, ψ(p) = A′δ(p − p0). (1.34)

The particle has a well defined momentum p = p0 and the uncertainty associated with

the momentum is ∆p = 0. On the other hand, the particle can be found at any position
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x with equal probability and the uncertainty in the position becomes ∆x = ∞. Now, we

consider another example: a diffracting point source and it is illustrated in Fig. 1.6(b).

The wavefunction in the position and momentum bases are given by

ψ(x) = Aδ(x − x0), ψ(p) = A′eipx0/h̄. (1.35)

In this case, the particle has a well-defined position x = x0; consequently, the uncertainty

associated with the position distribution becomes ∆x = 0, whereas the particle has all

the possible values of momentum with equal probability and the uncertainty associated

with the momentum distribution is ∆p = ∞.

These two examples show that for a single-particle state, we can not have accurate

knowledge of both position and momentum simultaneously. In general, this feature is

captured in the Heisenberg inequality

∆x∆p ≥ h̄/2. (1.36)

In 1935, A. Einstein, B. Podolsky, and N. Rosen envisioned a two-particle system in

which the particles are spatially separated with no causal influence. They described the

system by the following two-particle wavefunction [33]

Ψ(x1, x2) =

ˆ

ψ
(1)
k (x1)φ

(2)
k (x2)dk. (1.37)

1

2

Two-particle

      source

¢(p
2
|p

1
)

p
1

1

2

Two-particle

      source

¢(x
2
|x

1
)

x
1

(a) Momentum measurement (b) Position measurement

FIGURE 1.7: Illustrates the concept of (a) conditional momentum uncertainty and (b) conditional

position uncertainty.
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The above wavefunction is a continuous superposition of two-particle wavefunctions

ψ
(1)
k (x1)φ

(2)
k (x2) and it can not be written as the product of the wavefunctions of the

individual particles. The Eq. (1.37) implies that if we find the first particle with wave-

function ψ
(1)
k (x1), then the wavefunction of second particle is guaranteed to be φ

(2)
k (x2).

Consider a specific situation where ψ
(1)
k (x1) = eikx1 and φ

(2)
k (x2) = e−ik(x2−x0). This shows

that if the momentum of the first particle is found to be p1 = kh̄, then the momentum

of the second particle is certainly p2 = −kh̄. This measurement correlation between

two particles is quantified through a physically measurable quantity called conditional

momentum uncertainty ∆(p2|p1). It is defined as the uncertainty associated with the

momentum of the second particle p2, given that the first particle momentum is found to

be p1 = kh̄. Figure 1.7(a) illustrates the concept of conditional momentum uncertainty.

Smaller the value of ∆(p2|p1), stronger is the two-particle momentum correlation. In this

case, ∆(p2|p1) = 0. Now, we rewrite the Eq. (1.37) in the following form

Ψ(x1, x2) =

ˆ

u
(1)
x (x1)v

(2)
x (x2)dx, (1.38)

where, u
(1)
x (x1) = δ(x1 − x) and v

(2)
x (x2) = δ(x − x2 + x0). This implies that if the

first particle is found at x1 = x, then the second particle is gauranteed to be found at

x2 = x + x0. The conditional position uncertainty ∆(x2|x1) is defined as the uncertainty

associated with the position of second particle x2, given that the first particle is found at

x1 = x. Figure 1.7(b) illustrates the concept of conditional position uncertainty. In this

case, ∆(x2|x1) = 0. This two-particle state displays a simultaneous strong measurement

correlations in position and momentum bases between two spatially separated particles.

Now, the product of conditional position and momentum uncertainties is

∆(x2|x1)∆(p2|p1) = 0. (1.39)

For this two-particle wavefunction, we witness that the product of conditional position
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and momentum uncertainties violates the Heisenberg uncertainty relation, that is,

∆(x2|x1)∆(p2|p1) < h̄/2. (1.40)

This violation is the signature of position-momentum EPR correlation, and it also implies

that the particles are entangled in position-momentum bases. We note that this section

has presented position-momentum EPR correlation for a pure two-particle state. The EPR

correlation has also been used as a certifier for mixed state entanglement [77,78]. Over the

years, the position-momentum entanglement has been experimentally certified through

EPR correlation for the two-photon field generated by spontaneous parametric down-

conversion (SPDC) [39,53,56,78–82] and spontaneous four wave mixing (SFWM) [83,84]

processes.

Like the linear position and linear transverse momentum, the angular position and

z-component of orbital angular momentum (OAM) forms a conjugate pair. For a single

particle state, the corresponding Heisenberg uncertainty relation is written as [85]

∆θ∆l ≥ h̄/2[1 − 2πP(θ = θ0)], (1.41)

where ∆θ and ∆l are angle and OAM uncertainties respectively, associated with a single-

particle state. Here P(θ = θ0) is the probability of detecting the particle at the boundary

θ = θ0. The above uncertainty relation has been experimentally demonstrated with opti-

cal fields [86].

In the context of two-particle system, if the product of conditional angle and OAM

uncertainties of one the particle (say the second particle) violates the above Heisenberg

uncertainty relation in Eq. (1.41), that is,

∆(θ2|θ1)∆(l2|l1) < h̄/2[1 − 2πP(θ2 == θ0|θ1)], (1.42)

then it implies the signature of angle-OAM EPR correlation and the particles are entan-

gled in angle-OAM degrees of freedom [40, 87]. Here ∆(θ2|θ1) and ∆(l2|l1) are the condi-



1.7 Introduction to nonlinear optics 21

tional angle and OAM uncertianties respectively, of the second particle and P(θ2|θ1 = θ0)

is the probability of detecting the second particle at the boundaty θ2 = θ0 conditioned

that first particle is detected at θ1. The EPR correlation has been used for certifyting

angle-OAM entanglement of two-photon state generated in the SPDC process [40, 87].

The EPR correlation is a widely used experimental tool for certifying the other continuous-

variable entanglement such as radial position-radial momentum [88], time-energy [41,

89], and number-phase [90] degrees of freedom. In this thesis, we study entanglement

of SPDC two-photon field in position-momentum and angle-OAM bases through EPR

correlation. Our results and conclusions on entanglement in position-momentum and

angle-OAM bases are based on the behavior EPR correlation. In chapters 4 and 6, we

present a new method for measuring position-momentum EPR-correlation and we ex-

plore entanglement propagation in position-momentum and angle-OAM bases through

EPR-correlation respectively.

1.7 Introduction to nonlinear optics

Nonlinear optics studies the interaction of an electromagnetic field with a material, where

the material optical properties depend on the strength of the external field [91]. Due

to this interaction, electrons in the atoms experience a Columb force. As a result, the

electrons get displaced from their equilibrium. This displacement creates a net dipole

moment in the atom, which relies on the strength of the electric field. We define the

dipole moment per unit volume as polarization. For the sake of simplicity, we assume

both polarization P(r, t) and external electric field V(r, t) are scalar quantities. In the

linear optics regime, the strength of the external field is considered to be weak and the

polarization P(r, t) follows a linear relation with the external field V(r, t) and is given by

(see Eq. 1.1.1 in Ref. [91])

P(r, t) = ǫ0χ(1)V(r, t), (1.43)

where χ(1) and ǫ0 are the linear susceptibility and free space permitivity.
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Now, we consider the external field to be strong enough such that the polarization

P(r, t) no longer varies linearly with V(r, t). We now write P(r, t) as a power series

expansion of V(r, t) (see Eq. 1.1.2 in Ref. [91])– which corresponds to the nonlinear optics

regime.

P(r, t) = ǫ0χ(1)V(r, t) + ǫ0χ(2)V2(r, t) + ǫ0χ(3)V3(r, t) + ..., (1.44)

where χ(2), χ(3),... are the second, third order nonlinear susceptibility of the material and

so on. For crystals with no inversion symmetry i.e. non-centrosymmetric, the second or-

der nonlinear polarization becomes P(2)(r, t) = ǫ0χ(2)E2(r, t). For a noncentrosymmetric

crystal the electric displacement D(r, t) inside the crystal is given by

D(r, t) = ǫ0V(r, t) + P(r, t). (1.45)

We now find the energy density W inside the crystal

W =
1

2
V(r, t)D(r, t) =

1

2

[

ǫ0χ(1)V(r, t) + ǫ0χ(2)V2(r, t) + ǫ0χ(3)V3(r, t) + ...
]

V(r, t).

(1.46)

Here we only focus on the second order nonlinear effects and restrict the above series

upto χ(2) term. The above Eq. (1.46) takes the form

W = WL + WNL, (1.47)

where WL = ǫ0(1+ χ(1))V2(r, t)/2, and WNL = ǫ0χ(2)V2(r, t)/2 are linear and nonlinear

energy densities respectively. The form of the Hamiltonian due to the nonlinear effect

is [92]

H(t) =

ˆ

V
WNLd3r =

ǫ0

2

ˆ

V
χ(2)V3(r, t)d3r, (1.48)

where the intergration is performed over the crystal volume V . We next present a physi-

cally realized second order nonlinear process: spontaneous parametric down-conversion

(SPDC).
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1.8 Spontaneous parametric down-conversion

Spontaneous parametric down-conversion (SPDC) is a second-order nonlinear process in

which a stream of pump photons interacts with a noncentrosymmetric crystal. A frac-

tion of pump photons gets annihilated into signal and idler photons. Figure 1.8(a) shows

the schematic of the SPDC process. The word parametric implies that the process obeys

energy and momentum conservations, and the word down-conversion refers that the

frequencies of signal and idler photons are lower than the frequency of the pump pho-

ton. The energy conservation in down-conversion ensures that the pump photon energy

equals the sum of the energies of signal and idler photons. Similarly, the momentum

conservation ensures that the pump photon momentum equals the sum of the momenta

of signal and idler photons. Due to these conservation laws, the down-converted pho-

tons get entangled in position-momentum, time-energy, and angle-OAM bases. The two-

photon state generated in this process depends on the crystal configuration and the de-

tails of the pump photon. For example, both signal and idler photons propagate almost

collinearly with the pump photon called collinear phase-matching for a specific crystal

configuration. By changing the crystal orientation, the photon pair comes out in two

different propagation directions is known as non-collinear phase-matching. We next de-

rive the interaction Hamiltonian operator in SPDC process from the classical interaction

Hamiltonian in Eq. (1.48) and for this process, it takes the form [92]

H(t) =
ǫ0

2

ˆ

V
χ(2)Vp(r, t)Vs(r, t)Vi(r, t)d3r, (1.49)

where Vj(r, t) represent the electric field for pump (p), signal (s) and idler (i) photons.

We have discussed in section 1.2.2, in quantum treatment the electric field amplitude

V(r, t) is substituted by a Hermitian operator Ê(r, t), which is expressed as a sum of

positive and negative field operators in Eq. (1.8). We use the Eq. (1.8) for computing the

Hamiltonian operator Ĥ(t) corresponding to the above classical Hamiltonian H(t). Now,

we write the operators V̂j(r; t) for j = p, s, and i as a sum of their positive and negative

field operators, and evalute their product. The product comprises of total eight terms
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FIGURE 1.8: (a) Schematic of SPDC process– out of 108 pump photons one pump photon is down-

converted into signal and idler photons. (b) Energy level diagram represents that the pump fre-

quency is equal to the sum of frequencies of signal and idler photons. (c) Linear momentum

conservation diagram: pump momentum is equal to the sum of momenta of signal and idler pho-

tons.

corresponding to all the combinations of positive and negative field operators. Here

V̂
(+)
p (r, t)V̂

(−)
s (r, t)V̂

(−)
i (r, t) and V̂

(−)
p (r, t)V̂

(+)
s (r, t)V̂

(+)
i (r, t) are the only energy con-

serving terms, contribute to the product V̂p(r, t)V̂s(r, t)V̂i(r, t). The rest six non-energy

conserving terms average out to zero when we integrate the Hamiltonian over time as per

rotating wave approximation (see Section 2.3 of Ref. [93]). The interaction Hamiltonian

operator Ĥ(t) for SPDC process takes the following form

Ĥ(t) =
ǫ0

2

ˆ

V
χ(2)V̂

(+)
p (r, t)V̂

(−)
s (r, t)V̂

(−)
i (r, t)d3r+ H.c.. (1.50)

We will use the above Hamiltonian expression for computing the two-photon wavefunc-

tion in the position and momentum bases for collinear phase-matching in Chapter 4.

1.9 Summary

In summary, this chapter has reviewed spatial coherence, quantum entanglement, and

spontaneous parametric down-conversion concepts. The rest of this thesis will present

our experimental results on generation, measurement, and applications of spatial co-

herence and entanglement. In chapter 2, we will present a method for generating spa-

tially partially coherent fields based on their coherent mode representations. Using this

method, we will demonstrate the generation of propagation-invariant spatially stationary
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and GSM fields. In chapter 3, we will present a method for measuring two-dimensional

spatial coherence in a two-shot manner. In chapter 4, we will use the above measurement

technique for certifying the position-momentum entanglement in a pure two-photon field

by measuring the position and momentum coherence functions of one of the photons. In

chapter 5, we will demonstrate the applications of spatial coherence in the context of

imaging and free-space communications through random media. Finally, in chapter 6,

we will explore the propagation of spatial entanglement in SPDC two-photon fields and

report a novel feature that the propagation induces entanglement revival in the angle-

OAM degrees of freedom.





Chapter 2

Generation of spatial coherence in

optical field

2.1 Introduction

Optical fields having partial spatial coherence [70,94,95] offer numerous practical applica-

tions such as wide-field optical coherence tomography (OCT) [96], imaging through scat-

tering [21], optical communication [97,98], particle trapping [99,100], laser scanning [101],

plasma instability suppression [102], photographic noise reduction [103], and optical scat-

tering [104]. A spatially partially coherent field can be divided into two categories: spa-

tially stationary and spatially nonstationary. In analogy with the temporally stationary

fields, when the intensity of a field is independent of the spatial position and when the

two-point spatial cross-spectral function depends on the spatial positions only through

their difference, the field is called spatially stationary, at least in the wide sense [105–113].

A spatially stationary field has the unique property that its cross-spectral density func-

tion is propagation-invariant [107,113]. Such fields have several unique applications such

as 3D coherence holography [111] and photon correlation holography [112]. If the field

is not spatially stationary, it is categorized as spatially nonstationary. For example, Gaus-
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sian Schell Model (GSM) field, sunlight, etc.

There are several different ways of producing spatially partially coherent fields. While

one of the earliest experiments used a laser and an acousto-optical cell [113], later exper-

iments utilized a laser and a rotating ground glass plate (RGGP) to produce fields with

desired partial spatial coherence [105,111,114–121]. More modern methods involve using

a laser, and either a spatial light modulator (SLM) [122–125] or an RGGP in combination

with an SLM to achieve the purpose [112, 126, 127]. As far as propagation-invariant spa-

tially stationary partially coherent fields are concerned, to the best of our knowledge,

there have been only two experimental studies so far. In the first experiment the field

was generated using a laser and an acousto-optic cell [113] and in the second experi-

ment the generation was done using a laser and an RGGP [107]. Nevertheless, both these

techniques have demonstrated generation of only those cross-spectral density functions

that can be represented as Fourier transforms of circularly-symmetric functions. Thus, all

these existing experimental techniques for producing both spatially stationary and spa-

tially nonstationary partially coherent fields use a laser as the primary source, which, to

begin with, is spatially a completely coherent source. One then tries to make the field

emanating from such a source spatially partially coherent by introducing randomness in

the field-path by using either an acousto-optic cell [113], or a rotating ground glass plate

(RGGP) [105, 111, 114–116, 118–121] or a spatial light modulator (SLM) [112, 122–127].

In this chapter, we propose and demonstrate a novel generation technique based on

coherent mode representation of a spatially partially coherent field, which, in contrast to

the existing techniques does not require the introduction of additional randomness. We

demonstrate the generation of both propagation-invariant spatially stationary partially

coherent and Gaussian Schell Model (GSM) fields. By producing an incoherent mixture of

plane waves using a planar primary spatially uncorrelated light-emitting diodes (LEDs)

source, we generate propagation-invariant spatially stationary partially coherent fields

with desired cross-spectral density functions. We next demonstrate the generation of a

GSM field by incoherently mixing its coherent eigenmodes in a proportion fixed by their

normalized eigenspectrum.
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The chapter has been adopted veritably from Ref. [128, 129], and the contents are

organized in the following manner. In section 2.2.1, we present the theoretical modelling

of the propagation-invariant spatially stationary partially coherent fields and show its

coherent mode decomposition. In section 2.2.2- 2.2.5, we demonstrate the generation

of such spatially partially coherent fields and present the corresponding experimental

results. In section 2.3.1, we present the coherent mode decomposition of GSM fields. In

section 2.3.2- 2.3.4, we demonstrate the scheme for generating GSM field and present the

experimental results. In section 2.4, we present the summary of this chapter.

2.2 Propagation-invariant spatially stationary partially coherent

fields

2.2.1 Theory

Figure 2.1 illustrates a planar, monochromatic, spatially completely incoherent primary

source is kept at the back focal plane z = − f of a lens kept at z = 0. The planar primary

source along with the lens constitute our source of spatially partially coherent fields. We

represent the field radiating out from spatial location ρ′ at z by Es(ρ′, z). Since our pri-

mary source is spatially completely incoherent, the fields Es(ρ′
1,− f ) and Es(ρ′

2,− f ) ra-

diating out from ρ′
1 and ρ′

2, respectively, at z = − f are completely uncorrelated, that

is,

〈E∗
s (ρ

′
1,− f )Es(ρ

′
2,− f )〉e =

λ2
0

π
Is(ρ

′
1,− f )δ(ρ′

1 − ρ′
2). (2.1)

Here Is(ρ′
1,− f ) is the intensity of the primary source at z = − f and λ0 is the central

wavelength. We note that no realistic primary source can truly have a position corre-

lation given by Eq. (2.1), which requires that the spatial coherence length be zero. The

smallest spatial coherence length that can be associated with a primary source is of the

order of the wavelength λ0 of the source, and only a black body emitter can be idealized
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FIGURE 2.1: Schematic illustration of how a propagation-invariant spatially stationary field can

be generated using a spatially completely-uncorrelated primary source.

as such a source [130]. Nevertheless, for a millimeter-size source at optical wavelengths,

the position correlations of the order of λ0 can very well be approximated by Eq. (2.1). In

our experiments, we use LEDs as our primary incoherent sources, which are considered

spatially completely incoherent in the sense that their position correlations are approxi-

mated by the form given in Eq. (2.1) [131].

Thus, for our primary source whose position correlation is represented by Eq. (2.1),

every point on the source is radiating out as an independent point source and since each

of these points is kept at the back focal plane of a converging lens, the field Es(ρ′
1,− f ) ra-

diating out from ρ′
1 gets transformed into a plane wave with amplitude V(q1) by the

lens, where q1 represents the transverse wave-vector associated with the plane wave

[132, 133]. Here, we are assuming that the aperture-size of the lens is infinite. This

turns out to be a very good approximation for our purposes in this section and the ef-

fects due to a finite aperture-size lens is discussed and demonstrated in section 2.2.5. The

lens, therefore, transforms the non-correlation of the planar source in the position basis to

non-correlation in the transverse wave-vector basis. The correlations between different

transverse wave-vectors are quantified using the angular cross-spectral density function

A(q1, q2). It is defined as A(q1, q2) ≡ 〈U∗(q1)U(q2)〉e where 〈· · · 〉e represents the en-

semble average. The angular cross-sprectral density function of our partially coherent

source is the angular cross-spectral density function A(q1, q2) just after the lens plane,

that is, at z = 0, and is thus given by
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A(q1, q2) ≡ 〈U∗(q1)U(q2)〉e = Is(q1)δ(q1 − q2). (2.2)

Here Is(q1) is the spectral density of the field; it has the same functional form as that of

the primary source intensity. As we show below, this form of the angular cross-spectral

density function is the requirement for the partially coherent field coming out of a source

to be spatially stationary and propagation-invariant.

In section 1.3 of chapter 1, we have already worked out the relation between cross-

spectral density function W(ρ1,ρ2, z) at z = z and angular cross-spectral density function

A(q1, q2) and it is given by

W(ρ1,ρ2, z) =

¨ ∞

−∞

A(q1, q2)e
−iq1.ρ1+iq2.ρ2e

−i
(q2

1−q2
2)z

2k0 dq1dq2. (2.3)

Equation (2.3) governs how spatial correlations of the field, as represented by the cross-

spectral density function, change upon propagation in the region z > 0 after the lens.

Substituting the form of the angular cross-spectral density function from Eq. (2.2) into

Eq. (2.3), we obtain

W(ρ1,ρ2, z) = W(∆ρ, z) =

ˆ ∞

−∞

Is(q)e
−iq.∆ρdq =

ˆ ∞

−∞

Is(q)E
∗
q(ρ1)Eq(ρ2)dq, (2.4)

where ∆ρ = ρ1 − ρ2, Eq(ρ) = eiq.ρ. The intensity I(ρ, z) corresponding to the above

cross-spectral density function is

I(ρ, z) = W(ρ,ρ, z) =

ˆ ∞

−∞

Is(q)dq = K, (2.5)

where K is a constant. We find that the cross-spectral density function W(∆ρ, z) in Eq. (2.4)

is in the coherent-mode representation, with the plane waves being the coherent modes.

In other words, our source produces a field that is an incoherent mixture of plane-wave

modes. As a result, the generated field has the following properties: (1) The field is

propagation-invariant—This is because the cross-spectral density function as well as the in-
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tensity is independent of z. (2) The field is spatially stationary at a given z, at least in the wide

sense.—The intensity I(ρ, z) does not depend on ρ and the cross-spectral density function

depends on ∆ρ only. (3) The cross-spectral density function W(∆ρ, z) of the field is the Fourier

transform of its spectral density Is(q)—this is the spatial analog of the Wiener-Khintchine

theorem for temporally stationary fields (see Section 2.4 of [2]). Moreover, since the spec-

tral density has the same functional form as the intensity of the primary source, the cross-

spectral density function of the field is the Fourier transform of the intensity profile of

the primary source. We note that in our proposed technique, there is no restriction on

the form of the intensity function Is(ρ′) that the primary incoherent source can have. The

primary source can be continuous or having a finite size, or even in the form of a col-

lection of points. Therefore, using our proposed technique, one can produce on-demand

custom-designed, spatially stationary and propagation-invariant cross-spectral density

functions and not just the ones that are Fourier transforms of circularly-symmetric func-

tions [107, 113].

2.2.2 Experimental setup
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FIGURE 2.2: (a) Schematic diagram of the experimental setup. A planar, spatially incoherent

primary source is placed at the back focal plane of lens L1. The cross-spectral density of the field

produced by the source is measured using the Spatial Light Modulator (SLM). The propagation

length z is the distance between the lens L1 and the SLM, and the CCD-camera is placed at the

focal plane of lens L2. (b) A representative experimental interference pattern produced by the

double-slit simulated on the SLM, and the associated one-dimensional plot.

Fig. 2.2(a) shows the schematic of our experimental setup for generating spatially par-
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tially coherent fields with propagation-invariant and spatially stationary cross-spectral

density function. Our primary source is a commercially available 9 W planar LED bulb.

We use an interference filter centered at 632.8 nm having a wavelength-bandwidth of 10

nm. The LED bulb consists of 9 separate LEDs arranged in a 3×3 grid. We take the indi-

vidual LEDs to be spatially completely incoherent [131,134] in the sense that their spatial

cross-spectral density function can be approximated by Eq. (2.1). The individual LEDs

are dimensions of 0.8 × 0.8 mm, and the separation between the two nearest LEDs is 1.9

mm. We let the field produced by our source at z = 0 propagate to z = z and then mea-

sure the cross-spectral density function using a Young’s double-slit pattern simulated on

an SLM kept at z = z [135–137], with the separation between the slits being ∆ρ. The

offset parameter δ is the distance between the center of the field and the center of the

double-slit. We record the resulting interference fringe pattern by keeping a CCD camera

at the focal plane of lens L2 and then capturing only the first diffraction order due to the

SLM. Figure 2.2(b) shows the interference pattern captured by the CCD camera and the

associated one-dimensional section of the intensity pattern. We note that since the two

simulated slits are the same and the field is uniform in intensity, the magnitude |W(∆ρ, z)|

of the cross-spectral density function is the visibility of interference fringes. Therefore, by

measuring the interference visibility as a function of the slit separation ∆ρ, we directly

measure |W(∆ρ, z)| as a function of ∆ρ. We further note that any pattern simulated on an

SLM is seen by only one polarization component of an incoming field [137], and it is only

this component that contributes at the first diffraction order. The other polarization com-

ponent, if present, ends up at the zeroth diffraction order. Since our measurements are

made only at the first diffraction order, only one polarization component gets measured.

Therefore, the scalar theory of section 2.2.1 should be sufficient to describe the present

experiments.
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FIGURE 2.3: (a) The CCD-camera image of the LED. (b) Plot of intensity I(ρ, z) as a function of ρ

at z = 147 cm. (c) Plots of |W(∆ρ, z)| as a function of ∆ρ at z = 147 cm for various values of the

offset parameter δ. (d) Plots of |W(∆ρ, z)| as a function of ∆ρ for various values of z. In the above

figures, the black dashed curves represent the theoretical prediction based on Eq. (2.4).

2.2.3 Spatially stationary and propagation-invariant cross-spectral density func-

tions

Figure 2.3(a) is the image of the central LED of our bulb, which is our primary source.

The focal length f of lens L1 is 75 cm. From Eq. (2.3), the cross-spectral density function

is the Fourier transform of the primary source intensity profile. Figure 2.3(a) shows that

the primary source has almost symmetric intensity profile. As a result, we expect that

the generated W(∆ρ, z) is real. Under this assumption, the measurement of |W(∆ρ, z)| is

suffiecient for demonstrating the spatially stationarity and propagation-invariance of the

generated cross-spectral density function.

Figure 2.3(b) shows the plot of the intensity at z = 147 cm and Fig. 2.3(c) shows

plots of |W(∆ρ, z)| at z = 147 cm as a function of ∆ρ for several offset values δ. These

results verify that the generated field is spatially stationary. Figure 2.2(d) shows plots

of |W(∆ρ, z)| as a function of ∆ρ for various propagation distances up to 3.9 m. There

is little variation between the different plots. This proves that the cross-spectral density

function of the generated field is propagation-invariant at least up to a distance of 3.9
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meters. We note that the spatial coherence length of the field, which we define to be

the value of ∆ρ at which |W(∆ρ, z)| drops down to 1/e, is about 0.5 mm and remains

propagation-invariant. This is in contrast to the field produced by a bare primary source

of the same shape and size as that of the source in Fig. 2.3(a), in which case the spatial

coherence length, following the conventional van-Cittert Zernike theorem, increases by

about 5 times after propagating for 4 meters. Using Eq. (2.4) and the image of our primary

sources shown in Figs. 2.3(a), we calculate the theoretical cross-spectral density function

and plot them along with the experimental results in Figs. 2.2(c) and 2.3(d) as shown by

the solid dashed curve. We find a very good match between experimental and theoretical

results.

2.2.4 Engineering of spatial cross-spectral density function
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FIGURE 2.4: (a) The CCD-camera image of the LED. (b) Plot of intensity I(ρ, z) as a function of

ρ at z = 65 cm. (c) Plots of |W(∆ρ, z)| as a function of ∆ρ at z = 65 cm for various values of the

offset parameter δ. (d) Plots of |W(∆ρ, z)| as a function of ∆ρ for various values of z. In the above

figures, the black dashed curves represent the theoretical prediction based on Eq. (2.4).

In section 2.2.1, we have already discussed that using Eq. (2.4), one can engineer any

structure in the cross-spectral density function. Now, in order to experimentally verify

our claim, we use a primary source containing two spatially separated LEDs. The image

of the primary source is shown in Fig. 2.4(a). Figure 2.4(b) shows the plot of the inten-
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sity at z = 65 cm. Figure 2.3(c) shows plots of |W(∆ρ, z)| as a function of ∆ρ for various

values of the offset parameter δ at z = 65 cm, and Fig. 2.4(d) shows plots of |W(∆ρ, z)|

as a function of ∆ρ at various z. These results again demonstrate spatial stationarity and

propagation invariance. It is interesting to note that the cross-spectral density function in

this case is in the form of a fringe pattern which is nothing but the Fourier transform of

our source shown in Fig. 2.4(a). The theoretical prediction is shown by the dashed curve

in Figs. 2.4(c) and 2.4(d). Our reported experimental results match very well with the

theoretical predictions, demonstrating the accuracy and effectiveness with which custom-

designed, spatially stationary propagation-invariant cross-spectral density function can

be generated using our method. In order to produce a field with a given cross-spectral

density function one simply needs to construct a primary source with an intensity distri-

bution that is the inverse Fourier transform of the desired cross-spectral density function.

2.2.5 Effects due to a finite aperture lens

The theoretical modeling presented so far assumes that the lens that constitutes our par-

tially coherent source has an infinite aperture size. However, in a realistic experimental

situation, the aperture size of a lens is finite, and in our case, it is of the order of an inch. As

discussed in Ref. [107], and as illustrated in Fig. 2.5(a), the finite aperture size of the lens

restricts the propagation invariance properties to distance zmax, given by zmax = D f /s,

where D is the aperture size of the lens, f is the focal length and s is the size of the primary

source. In order to experimentally demonstrate zmax, we use the LED source shown in

Fig. 2.2(a) with an f = 30 cm lens. Figures 2.5(b) and 2.5(c) show how the transverse spa-

tial coherence length changes as a function of z for two different values of the aperture-

size D. As the aperture-size becomes bigger zmax gets larger. Nevertheless, even with

realistic aperture sizes, one can easily achieve a zmax of up to tens of meters. Although

the finite aperture size of the lens may seem to only have the restricting effect on zmax,

it can in fact lead to restructuring of spatial correlations in a way that can have its own

set of advantages. We now report such a restructuring effect when the primary source

is in the form of two spatially separated LEDs, as shown in Fig. 2.4(a). As illustrated
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generation of region-wise spatially stationary fields. (e) Plot of intensity I(ρ, z) as a function of

ρ at z = 65 cm. (f) Plots of |W(∆ρ, z)| as a function of ∆ρ at z = 65 cm for various values of the

offset parameter δ.

in Fig. 2.5(d), the propagation-invariant field generated due to such a primary source

has two distinct regions over which spatial stationarity is observed. Region-I receives

plane wave contributions from both LEDs, while Region-II only receives contributions

from a single LED. This leads to the two regions having two distinct spatially stationary

propagation-invariant cross-spectral density functions. We term such fields as “region-

wise spatially stationary fields.” Figure 2.5(f) shows the plots of |W(∆ρ, z)| as a function

of ∆ρ for various values of the offset parameter δ in Region-II. These results demonstrate

the spatial stationarity in Region-II. The spatial stationarity of Region-I is already shown

in Fig. 2.4(c). Therefore, the finite aperture size of the lens offers an advantage in creating

region-wise spatially stationary fields.



38 Generation of spatial coherence in optical field

2.3 Gaussian Schell Model fields

2.3.1 Theory

The cross-spectral density function of a Gaussian Schell Model (GSM) field is given by

W(ρ1,ρ2) =
√

I(ρ1)I(ρ2)µ(ρ1 − ρ2), (2.6)

where I(ρ) = A2 exp
[

−ρ2/(2w2
0)
]

and µ(ρ1 − ρ2) = exp
[

−(∆ρ)2/(2σ2
c )
]

are the trans-

verse intensity distribution and spatial coherence function of the field respectively. Here

w0 and σc are the beam size and spatial coherence length respectively, ρ1 ≡ (x1, y1),

ρ2 ≡ (x2, y2), ∆ρ = |ρ1 − ρ2|, and A is a constant. Following Ref. [138], we represent the

coherent mode decomposition of Eq. (2.6) as

W(ρ1,ρ2) = ∑
m

∑
n

ImnE∗
mn(x1, y1)Emn(x2, y2), (2.7)

where Emn(x, y) are the coherent eigenmodes and Imn are the distribution of correspond-

ing eigenmodes.

Imn = I00

[

1

(q2/2) + 1 + q[(q/2)2 + 1]1/2

](m+n)

, (2.8)

Emn(x, y) =

(

2c

π

)
1
2 1√

2m+nm!n!
Hm(x

√
2c)Hn(y

√
2c)e−c(x2+y2). (2.9)
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FIGURE 2.6: Theoretical plots of the normalized eigenvalues Īmn for three different values of the

degree of global coherence, namely, for q = 0.80, q = 0.50, and q = 0.25.
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Here Hm(x) are the Hermite polynomials and the quantity q = σc/w0 is called “global

degree of coherence” of the field. For fixed w0, higher values of q imply higher values

for the degree of spatial coherence. In what follows it will be very convenient to work

with the normalized eigenvalues Īmn. So, for that purpose, we first take I00 = 1 and

then define Īmn as : Īmn = Imn/ (∑mn Imn) such that ∑mn Īmn = 1. The Eq. (2.7) shows

that to generate a GSM field, one needs to generate the spatially completely coherent

eigenmodes Emn(x, y) and then mix them incoherently in Īmn proportion. We also find

that for a normalized eigenspectrum, the coherent mode representation of Eq. (2.7) has

only q and c as free parameters. The parameter q decides the exact proportion Īmn of the

eigenmodes Emn(x, y) and the parameter c decides the overall transverse extent of the

field. Thus by controlling q and c one can generate any desired GSM field. Figure 2.6

shows the theoretical plots of normalized eigenvalues Īmn for three different values of q,

namely, q = 0.8, q = 0.5, and q = 0.25. The value of c for all the fields is 1.34 mm−2.

We find that to generate GSM fields with the smaller global degree of coherence q one

requires to mix a larger number of eigenmodes.

2.3.2 Experimental generation

Figures 2.7(a) and 2.7(b) show the experimental setup for generating the GSM field and

measuring its cross-spectral density function using an wavefront inversion based inter-

ferometer, respectively. The details of cross-spectral density measurement is described in

Chapter 3. The Gaussian field from a 5-mW He-Ne laser incident on a Holoeye Pluto spa-

tial light modulator (SLM) and an appropriate phase pattern is displayed on the SLM to

generate a given eigenmode at the detection plane of the EMCCD camera. In particular,

the SLM is programmed to generate different eigenmodes Emn(x, y) using the Arrizon

method [139]. Figure 2.7 (c) shows the experimentally measured and theoretically ex-

pected intensity profiles of eigenmodes: E11(x, y), E44(x, y), and E77(x, y). We find a good

match between the theory and experiment. Now, to produce a GSM field with a given q,

that is, a given eigenspectrum Īmn, we need to produce the incoherent mixture of differ-

ent eigenmodes with proportion given by Īmn. It has been done in the following manner.
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FIGURE 2.7: (a) Schematic setup for generating GSM fields. (b) Schematic setup for measuring the

cross-spectral density function. Here, we have L: converging lens; SLM: Spatial Light Modulator;

M: mirror; and BS: beam splitter, (c) The theoretically expected and experimentally generated

intensity corresponding to the eigenmodes E11(x, y), E44(x, y), and E77(x, y).

First, the phase patterns corresponding to different eigenmodes are displayed on the SLM

sequentially. The weights Īmn are fixed by making the display-time of the phase pattern

corresponding to an eigenmode Emn(x, y) proportional to the corresponding eigenvalue

Īmn. In our experiment, the SLM works at 60 Hz. The display-time of a given phase pat-

tern on the SLM is of the order of tens of milliseconds, while the coherence time of our

He-Ne laser is in tens of picoseconds. Although the SLM introduces a deterministic phase

modulation along the beam cross-section for a given eigenmode, the phase modulation

for a given eigenmode is completely uncorrelated with that for any other eigenmode.

In this way, the SLM produces an incoherent mixture of coherent modes, as long as the

observation time is kept long enough for all the modes to get detected. Therefore, the

exposure time of the EMCCD camera is made equal to the total display-time of all the
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phase patterns such that the camera collects all the generated eigenmodes.

Using the procedure described above, we generate GSM fields for three different val-

ues of q, namely, q = 0.8, q = 0.5, and q = 0.25. Although in principle, for any given q

we need an infinite number of modes to produce the corresponding GSM field precisely.

However, the plots in Fig. 2.6 show that for any finite q, the number of eigenvalues Īmn

with significant contributions are only finite and that the number of significant eigenval-

ues increases with decreasing q. In our experiment, we keep 0.07 × Ī00 as the cutoff for

deciding the eigenmodes with a significant contribution. This means that for a given q

we generate only those eigenmodes for which Īmn ≥ 0.07 × Ī00. With this cutoff, we gen-

erate 10, 21, and 66 eigenmodes, respectively, for the three values of q. The sum of these

eigenvalues ∑mn Īmn turns out to be about 0.87, 0.84, and 0.82, respectively, for the three q

values, which are quite close to one.

2.3.3 Cross-spectral density function

Each of the generated GSM fields is made incident on the interferometer in Figure 2.7(b).

In our experiment, the SLM works at 60 Hz, and the EMCCD camera was kept opened

for 1.40, 3.00, and 5.76 seconds, respectively, for the three q values. This was for ensuring

that the camera collects all the generated eigenmodes. The value of c in each case was

1.34 mm−2. Now, using the interferometer in Fig. 2.7(b) we measure the cross-spectral

density function W(ρ,−ρ) ≡ W(2ρ) ≡ W(2x, 2y) of the generated GSM field. Figures

2.8(a), 2.8(d), and 2.8(g) show the experimentally measured cross-spectral density func-

tions W(2x, 2y) for the three values of q while Figs. 2.8(b), 2.8(e), and 2.8(h) show the

corresponding theoretical cross-spectral density functions plotted using Eq. (2.6). Both

experimental and theoretical cross-spectral density functions are both scaled such that

maximum value of W(2x, 2y) is equal to one. In order to compare our experimental

results with the theory, we take the one-dimensional cuts of the theoretical and experi-

mental cross-spectral density functions and plot them together in Figs. 2.8(c), 2.8(f), and

2.8(i), for the three values of q.
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FIGURE 2.8: Plots of the the cross-spectral density function of GSM fields with q = 0.8, q =
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spectral density functions W(2x, 2y) while (b),(e) and (h) are the corresponding theoretical plots.

(c),(f) and (i) are the plots of the one-dimensional cuts along the x-direction of the theoretical and

experimental cross-spectral density functions.

2.3.4 Transverse intensity profile and spatial coherence function

Next, we measure the transverse intensity profile of the GSM field for different values

of q. For measuring the intensity profile, we block the interferometric arm containing

the lens and record the intensity at the EMCCD camera plane. Figures 5.4(a), 5.4(g) and

5.4(m) show the measured intensity profiles I(ρ) = I(x, y) for the three values of q. The

corresponding theoretical intensities as given by Eq. (2.6) are plotted in Figures 2.9(b),

2.9(h) and 2.9(n), respectively. The experimental and theoretical plots are both scaled

such that the value of the most intense pixel is equal to one. Again, for comparing our

experimental results with theory, we plot the one-dimensional cuts along the x-direction

of the theoretical and experimental intensity profiles in Figs 2.9(c), 2.9(i) and 2.9(o).

Finally, using the above measured intensity I(ρ) and cross-spectral density func-



2.3 Gaussian Schell Model fields 43

TheoryExperimentTheoryExperiment

q=
0
.5

q   =
0
.8

q=
0
.2

5

-3.25 3.250
0

1

-3.25 3.250

0

1

0

1

0

1
0

1

0

1

x (mm)x  (mm)

I(
x

)
I(
x

)
I(
x

)

(a) (b) (d) (e)

(g) (h) (j)

(p) (q)

(k)(i)

(m) (n)

¹ (2x, 2y)I(x, y) Theory
Experiment

Theory
Experiment

q=
0
.5

q   =
0
.8

q=
0
.2

5
y

x

y

(c)

x

(o)

¹
 (

2
x

)
¹

 (
2
x

)
¹

 (
2
x

)

(l)

(f)

(r)

FIGURE 2.9: Plots of the intensity and the degree of coherence of GSM fields with q = 0.8, q =

0.5,and q = 0.25. For the three values of q, (a),(g) and (m) show the experimentally measured

intensity profiles I(x, y) while (b),(h) and (n) are the corresponding theoretical plots. (c),(i) and (o)

are the plots of the one-dimensional cuts along the x-direction of the theoretical and experimental

intensity profiles. For the three values of q, (d),(j) and (p) are the experimental degree of coherence

µ(2x, 2y) while (e),(k) and (q) are the corresponding theoretical plots. (f),(l) and (r) are the plots

of the one-dimensional cuts along the x-direction of the theoretical and experimental degree of

coherence functions.

tion W(2ρ), we find the spatial coherence function µ(2ρ) ≡ µ(2x, 2y). Figures 2.9(d),

2.9(j) and 2.9(p) show the experimental coherence function for the three q values while

Figs. 2.9(e), 2.9(k), and 2.9(q) show the corresponding theoretical plots. We scale the

both experimental and theoretical plot such that the value of the most intense pixel is

equal to one. To further compare our experimental results with the theory, we take the

one-dimensional cuts along the x-direction of the theoretical and experimental coherence

functions and plot them together in Figs. 2.9(f), 2.9(l) and 2.9(r) for three values of q.

The results show that with decreasing q the width of coehrence function decreases while

the width of the transverse intensity profile increases. This is due to the fact that for

generating fields with smaller q values, one requires to mix together a larger number of

eigenmodes, as illustrated in Fig. 2.5 and the increase in the number of eigenmodes in the

incoherent mixture increases the randomness and thereby decreases the spatial coherence
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length while increases the transverse width of the beam. We find a good match between

the theory and experiment for each value of q.

The above result shows that the GSM field with q = 0.80 has a better match with the

theory than the field with q = 0.25. The reasons for this are as follows. First of all, as

illustrated in Fig. 2.6, the eigenvalue distribution for q = 0.25 is much broader than that

for q = 0.80. As a result, for producing the GSM field with q = 0.25, we need to generate

a larger number of modes with corresponding eigenvalues Īmn. As mentioned earlier, the

eigenvalue Īmn is assigned by the display time of the corresponding eigenmode Em,n(x, y)

on the SLM. Now, since the refresh rate of the SLM is 60 Hz, and the collection time of

the detection camera is in seconds, we have only a few hundred discrete time-bins for

assigning the eigenvalues Īmn. This puts a limit on the precision with which a given

number of modes with eigenvalues Īmn could be generated and therefore results in a

better match for GSM field with q = 0.80 since that requires a lower number of modes

to be produced. Nevertheless, this limitation can be overcome by using a faster SLM,

which can provide a greater number of time-bins for a given collection time and thereby

can improve the precision with which Īmn could be generated. The other reason for a

better match at q = 0.80 is the cutoff on Īmn, which restricts the number of eigenmodes

in the incoherent mixture. For the given cutoff of 0.07 × Ī00 on Īmn, the sum ∑mn Īmn
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becomes 0.87 and 0.82 for q = 0.80 and 0.25, respectively, resulting in a better match

for q = 0.80. We now analyse the effect of the cutoff on the accuracy with which GSM

field could be generated. by ploting the numerically simulated µ(2x, 2y) at q = 0.25 for

three different cutoffs values as shown in Fig. 2.10. We find that the generation accuracy

can be improved by decreasing the cutoff value. Thus, one can decide the cutoff for the

eigenvalues depending on the accuracy requirement for a given application.

2.4 Summary

In summary, we have proposed and demonstrated a method for generating spatially par-

tially coherent fields based on their coherent mode representation. Our method has pro-

duced an incoherent mixture of plane wave modes by using a planar spatially uncor-

related primary LED source and demonstrated the generation of propagation-invariant

spatially stationary fields with very good accuracy. We have demonstrated propagation

invariance of cross-spectral density functions up to almost 4 meters. We have further

showcased the effectiveness of this technique by generating custom-designed structure

in the cross-spectral density function. Next, we have reported the generation of GSM

field by incoherently mixing its coherent eigenmodes. In order to show the flexibility of

this generation scheme, we have generated GSM fields with wide range of values for the

global degree of coherence, and to the best of our knowledge, such a demonstration has

not been reported earlier. Compared to the existing techniques for producing spatially

partially coherent fields [112, 114–116, 118–121, 126, 127], the main advantage of our tech-

nique is that it does not explicitly involve introducing any additional randomness. As

a result, the errors involved in our scheme are mostly systematic and are easily control-

lable. Thus, our method provides much better control and accuracy. The recent experi-

mental schemes have used coherent mode decomposition for producing different types of

spatially partially coherent fields without introducing additional randomness [140, 141].

Moreover, the recent work in Ref. [142] has aslso highlighted the advantage of coher-

ent coherent mode decomposition based generation technique in the context of GSM
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fields. In chapter 5, we present the applications of spatially partially coherent fields with

propagation-invariant and structured spatial coherence functions in imaging and optical

communication through random media, respectively.



Chapter 3

Measurement of spatial coherence in

optical field

3.1 Introduction

Spatial coherence in an optical field is quantified through spatial cross-spectral density

function or spatial coherence function. In the previous chapter, we have briefly discussed

the implications of partial spatial coherence in various applications, including imaging

through turbulence [21], free-space optical communication [97, 98], wide-field optical co-

herence tomography [96], sensing [27], microscopy [25], etc. For all of these applications,

a fast and accurate way of measuring the cross-spectral density function is an essential

requirement.

Over the years, several experimental methods have been proposed and demonstrated

for measuring the spatial cross-spectral density function. The Young’s double-slit in-

terferometer [2, 3, 107, 143] and its variants [144, 145] are among the most commonly

used techniques. However, the techniques based on Young’s double-slit interferome-

try have several drawbacks. First of all, in order to measure the cross-spectral density

function with increased resolution, one requires progressively narrower slits. This re-
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quirement makes such techniques very difficult for light fields with very low intensi-

ties or to generalize them for measuring two-dimensional functions. Furthermore, the

measurement of cross-spectral density functions using such techniques requires multi-

ple measurements with varying slit separations. This increases the measurement time

as well as the stability requirements for the interferometers. Other schemes for measur-

ing the cross-spectral density function include shearing interferometry [146, 147], phase-

space tomography [148,149], the schemes based on free-space propagation [150,151] and

the schemes based on scanning a small obstacle over the test plane and then measuring

the resulting radiant intensity [152, 153]. However, these methods are either not suitable

for low-intensity fields or require multiple measurements. Thus, existing methods are

unsuitable for efficiently measuring two-dimensional cross-spectral density functions. A

scheme proposed by Wessely et al. [154] does measure the two-dimensional cross-spectral

density function in a single shot manner without requiring multiple measurements; how-

ever, due to the finite edge-width of the prisms used in the scheme, the scheme misses

out some information and as a result does not measure the entire cross-spectral density

function.

In this chapter, we propose and demonstrate an image-inversion based interferomet-

ric technique for measuring the two-dimensional cross-spectral density function in a two-

shot manner. Our technique is the spatial analog of the recently implemented technique

in Ref. [155] for measuring the angular coherence function [156]. Using this technique, we

measure several lab synthesized two-dimensional cross-spectral density functions with

very good accuracy.

The chapter has been adopted veritably from Ref. [157], and the contents of this chap-

ter are organized in the following manner. In section 3.2, we present the theoretical de-

scription of our method. In section 3.3, we present experimental demonstrations and

results. Section 3.4 summarizes the entire chapter.
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FIGURE 3.1: (a) Schematic diagram of the experimental setup. The primary incoherent source is

kept at the back focal plane of a converging lens L with focal length f = 200 cm. The mirror M2 is

kept at the back focal plane of the converging lens L2 of focal length f2 = 10 cm. The length of each

interferometric arm is about 14 cm, and the CCD camera is kept at about 10 cm from the beam

splitter (BS). An interference filter (IF) centered at 632.8 nm having a wavelength-bandwidth of 10

nm is used before the CCD camera. The spatially partially coherent field exiting the lens L ends up

having the cross-spectral density function that depends on the spatial coordinates only through

their difference. (b) The two interfering wavefronts at the CCD camera plane. The wavefront

coming through the interferometric arm having lens L2 is inverted in both x and y directions

compared to the wavefront coming through the arm having no lens. In the above figure, we have

used the following abbreviations: BS stands for beam splitter, M for mirror, L for converging lens,

and IF for interference filter.

3.2 Theory: Description of two-shot measurement scheme

Figure 3.1 illustrates our proposed method and shows the schematic diagram of our ex-

perimental setup. The source generates a spatially partially coherent field. We represent

the field produced by the source in any given realization by Ein(ρ). The corresponding

cross-spectral density function of the field is given by W(ρ1,ρ2) = 〈E∗
in(ρ1)Ein(ρ2)〉e,

where 〈· · · 〉e denotes the ensemble average over many different realizations of the field.

We aim to measure the cross-spectral density function using the interferometer shown in

Fig. 3.1(a). The interferometer has two arms. One arm contains a mirror, while the other

arm contains a converging lens along with a mirror kept at the back focal plane of the

converging lens. For a collimated field, the lens produces an inverted wavefront at the
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mirror, which is reflected back onto the lens. After reflection, the wavefront is collimated

back by the lens, producing a wavefront that is inverted in both x and y directions with

respect to the incoming collimated field, that is, ρ → −ρ. The two interfering wavefronts

at the detection plane (CCD camera) have been illustrated in Fig. 3.1(b). The field at the

output port of the interferometer can therefore be written as

Eout(ρ) =
√

k1Ein(ρ)e
i(ω0t1+β1) +

√

k2Ein(−ρ)ei(ω0t2+β2). (3.1)

Here, t1 and t2 denote the times taken by the field to travel through the two arms of

the interferometer; ω0 is the frequency of the field; β1 and β2 are the phases other than

the dynamical phases acquired in both the arms; k1 and k2 are the scaling constants in

the two arms. The intensity Iout(ρ) at the output port of the interferometer is given by

Iout(ρ) = 〈E∗
out(ρ)Eout(ρ)〉 and can be shown to be

Iout(ρ) =k1〈E∗
in(ρ)Ein(ρ)〉+ k2〈E∗

in(−ρ)Ein(−ρ)〉+
√

k1k2〈E∗
in(ρ)Ein(−ρ)〉eiδ + c.c.,

(3.2)

where δ = ω0(t2 − t1)+ (β2 − β1). We write 〈E∗
in(ρ)Ein(−ρ)〉 = W(ρ,−ρ), 〈E∗

in(ρ)Ein(ρ)〉 =

I(ρ), and 〈E∗
in(−ρ)Ein(−ρ)〉 = I(−ρ). Therefore Iout(ρ) can be written as

Iout(ρ) = k1 I(ρ) + k2 I(−ρ) + 2
√

k1k2{Re[W(ρ,−ρ)] cos δ − Im[W(ρ,−ρ)] sin δ}. (3.3)

Here Re[W(ρ,−ρ)] and Im[W(ρ,−ρ)] denote the real and imaginary parts of the cross-

spectral density function, respectively. It is clear from the above equation that the output

intensity Iout(ρ) has the cross-spectral density function W(ρ,−ρ) encoded in it. If the

cross-spectral density function is real and if we know the values of k1, k2, I(ρ) and δ then

in principle a single-shot measurement of the output interferogram Iout(ρ) will yield the

cross-spectral density function W(ρ,−ρ) of the field. However, it is in general very dif-

ficult to obtain W(ρ,−ρ) using this strategy because of the requirement that k1, k2, I(ρ)

and δ should be known precisely. Any error in the knowledge of these quantities intro-

duces error in the estimation of the cross-spectral density function. Furthermore, there
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are wavefront errors introduced by the interferometer which also degrade the fidelity of

the estimation. Nevertheless, it has been shown in Ref. [155] that if, instead of one, two

suitable output interferograms are collected then not only the estimation becomes inde-

pendent of wavefront errors but also there remains no need to know k1, k2, I(ρ) and δ.

This can be illustrated as follows. Suppose the experimentally measured output intensity

Īδ
out(ρ) at δ contains some background Iδ

b (ρ) in addition to the signal Iout(ρ). Therefore,

Īδ
out(ρ) can be written as

Īδ
out(ρ) = Iδ

b (ρ) + k1 I(ρ) + k2 I(ρ)+2
√

k1k2{Re[W(ρ,−ρ)] cos δ − Im[W(ρ,−ρ)] sin δ}.

(3.4)

Now, let us assume that we have two output interferograms with intensities Īδc
out(ρ) and

Īδd
out(ρ) measured at δ = δc and δ = δd, respectively. The difference ∆ Īout(ρ) = Īδc

out(ρ)−

Īδd
out(ρ) in the intensities of the two interferograms is therefore given by

∆ Īout(ρ) = ∆Ib(ρ) + 2
√

k1k2{Re[W(ρ,−ρ)](cos δc − cos δd)− Im[W(ρ,−ρ)]

× (sin δc − sin δd)}, (3.5)

where ∆Ib(ρ) = Iδc

b (ρ)− Iδd

b (ρ) is the difference in background intensities. We assume

that the background does not vary from shot to shot, that is, ∆Ib(ρ) ≈ 0. Further-

more, we assume that the cross-spectral density function is either completely real or

has a negligible imaginary part. Now, along with these assumptions, if we measure the

two interferograms at δc ≈ 0 and δd ≈ π, we have Im[W(ρ,−ρ)](sin δc − sin δd) ≪

Re[W(ρ,−ρ)](cos δc − cos δd), and thus ∆ Īout(ρ) becomes effectively proportional to the

real part of the cross-spectral density function, that is,

∆ Īout(ρ) ∝ Re[W(ρ,−ρ)]. (3.6)

Therefore, by measuring the difference intensity ∆ Īout(ρ), one can directly measure the

real part of the cross-spectral density function W(ρ,−ρ) of the input field. We note that

for a spatially stationary source, the cross-spectral density function depends on the spatial
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coordinates only through difference ∆ρ. As a result, for such fields we write W(ρ,−ρ)

as W(2ρ), which is same as the cross-spectral density function W(ρ1,ρ2) for any pair of

space points in the field. However, even for spatially nonstationary fields in which the

intensity is not a constant but I(ρ) = I(−ρ), our method can measure the cross-spectral

density function W(ρ,−ρ) around ρ = 0, and reconstruct the entire W(ρ1,ρ2). Using this

technique, we have demonstrated the measurement of cross-spectral density function of

GSM field (see chapter 2, section 2.3), which is a spatially nonstationary field.

We further note that the above formalism has been worked out for a cross-spectral

density function that is either completely real or has a negligible imaginary part. A cross-

spectral density function can in general be complex. For such cross-spectral density func-

tions, one can work out a two-shot formalism that is analogous to the one presented in

the methods section of Ref. [155]. However, in contrast to the above formalism, the anal-

ogous formalism would require δc and δd to be known precisely.

3.3 Experiment and Results

We now experimentally measure spatial cross-spectral density functions using the pro-

posed scheme. We use the experimental technique described in chapter 2 for generating

spatially partially coherent fields, in which a spatially incoherent primary source is placed

at the back focal plane of a converging lens (see Fig. 3.1(a)). As a consequence, the field

exiting the lens ends up having the cross-spectral density function given by [128].

W(ρ1,ρ2) → W(∆ρ) =

ˆ ∞

−∞

I(q)e−iq.∆ρdq, (3.7)

where I(q) is the spectral density of the field exiting the lens and is proportional to the

intensity Is(ρ′) of the primary incoherent source [128], where ρ′ represent the spatial

co-ordinates at the plane of the primary incoherent source while ρ represent the spatial

co-ordinates at a plane after the converging lens. The cross-spectral density function

W(∆ρ) depends only on ∆ρ = |ρ1 − ρ2| and is the Fourier transform of I(q). Thus it
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FIGURE 3.2: (a) and (e) CCD camera images of two separate primary incoherent sources. (b) and

(f) The theoretical cross-spectral density function Re[W(2ρ)] of the spatially partially coherent

fields produced by the combination of the primary incoherent source and the converging lens. (c)

and (g) The experimentally measured Re[W(2ρ)]. (d) and (h) Plots of the one-dimensional cuts

along the y-direction of the theoretical and experimental cross-spectral density functions. The

theoretical and experimental plots have been scaled such that the maximum of Re[W(2ρ)] is one.

is proportional to the Fourier transform of the source intensity Is(ρ′). We note that the

cross-spectral density function of Eq. (3.7) represents a field that is propagation-invariant

invariant [128]. We further note that when I(q) is a symmetric function, W(∆ρ) is real.

For any real source I(q) cannot entirely be symmetric. However, we assume that the

spectral density I(q) of our source is almost symmetric such that W(∆ρ) has a negligible

imaginary part. Our experiments use a commercially available 9-W planar light-emitting

diode (LED) bulb as the primary incoherent source. The LED bulb consists of 9 separate

LEDs arranged in a 3×3 grid (see Fig. 3.2(e)). The primary source in Fig. 3.2(a) is obtained

by covering the remaining 7 LEDs. The individual LEDs are of dimensions 0.8 × 0.8 mm,

and the separation between the two nearest LEDs is 1.9 mm. The source is kept at the

back focal plane of lens L having focal length f = 200 cm. The mirror M2 is kept at

the back focal plane of the converging lens L2 of focal length f2 = 10 cm. The length

of each interferometric arm is about 14 cm, and the CCD camera is kept at about 10

cm from the beam splitter (BS). An interference filter (IF) centered at 632.8 nm having a

wavelength-bandwidth of 10 nm is used before the CCD camera. Figure 3.2 shows our
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experimental results. Figures 3.2(a) and 3.2(e) are the CCD camera images of the two

separate primary incoherent sources used. Figures 3.2(b) and 3.2(f) are the theoretical

cross-spectral density functions of the spatially partially coherent fields generated by the

combination of the primary incoherent source and the converging lens. These theoretical

plots have been generated by first performing the Fourier transform of Eq. (3.7) with

intensity Is(ρ′) of the images in Figs 3.2(a) and 3.2(e) and then taking the real parts.

Figures 3.2(c) and 3.2(g) show the experimentally measured Re[W(2ρ)] through our two-

shot technique, by collecting suitable interferograms at two different values of δ, in each

case. In our experiment, δ was varied by manually moving the translation stage, and

the sets of two interferogram images were collected with δc ≈ 0 and δd ≈ π. In order

to compare our experimental results with theory, we plot in Figs. 3.2(d) and 3.2(h) the

one-dimensional cuts along y-direction of the theoretical and experimental cross-spectral

density functions. The theoretical and experimental plots have been scaled such that

the maximum of Re[W(2ρ)] is one. We find a good agreement between the theory and

experiment. This also verifies our assumption that the spectral density I(q) produced

by our source is almost symmetric, and thus the imaginary part of the cross-spectral

density function is negligible. The slight mismatch between the theory and experiment

can be attributed to the very low but finite shot-to-shot background variations and to the

negligible but finite imaginary part of the cross-spectral density function. We believe that

the finite shot-to-shot background variations can be minimized even further if the phase

difference δ is varied in an automated manner.

3.4 Summary

In summary, we have proposed and demonstrated a scheme for measuring the two-

dimensional cross-spectral density function in a two-shot manner. We have reported

the measurements of a few lab-synthesized cross-spectral density functions with very

good agreement with theory. Our measurement technique overcomes the limitations of

the conventional interferometers for measuring the cross-spectral density function in that
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it yields the entire cross-spectral density function using just two shots, is insensitive to

background noise, and does not require precise knowledge of experimental parameters.

We expect our technique to have important implications for applications such as cor-

relation holography and wide-field OCT based on utilizing the partial spatial coherence

properties of optical fields. In chapter 4, we use this interferometric technique for measur-

ing position and momentum cross-spectral density functions of one of the SPDC photons.





Chapter 4

Measurement of spatial

entanglement in two-photon field

4.1 Introduction

If a two-photon field is entangled in position and momentum variables, it is certified

through position-momentum Einstein Podolsky Rosen (EPR) correlation measurements

[33]. For two-dimensional variables, such as polarization, entanglement can be verified

through the violations of Bell’s inequalities [158] and can be quantified through mea-

sures such as concurrence [159]. However, for continuous variables, such as position-

momentum, angle-OAM, time-energy, there is no entanglement quantifier and one can

at best certify entanglement through various ways such as EPR correlation [33, 39, 40,

56, 82, 90, 160], partial transpose method [161–164], Rényi entropy [165, 166], etc. The

EPR correlation measurements are the most widely used experimentals tool among all

the entanglement certifiers. In the past, several studies have used EPR correlation mea-

surements in the position-momentum variables in order to demonstrate entanglement

[39, 53, 56, 78–82]. More recently, EPR correlation measurements have become important

tools for witnessing continuous-variable entanglement even in entangled systems not
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consisting of photons. These include macroscopic objects [167], Bose-Einstein conden-

sate [168], and cold atoms [169].

The demonstration of position-momentum EPR correlation is very important for many

applications such as quantum key distribution [54], quantum information processing

[52], quantum metrology [50], quantum imaging [43–45, 170, 171], and quantum holog-

raphy [47], since the efficiency of these applications relies on how accurately the EPR

correlation could be measured. Therefore, it is very important to have a more accurate

technique for measuring EPR correlation. In the past few years, many schemes with in-

creased accuracy have been demonstrated [39–41, 53, 56, 78–82, 88, 89, 172, 173]. However,

all these methods involve coincidence detection, implemented either by using two scan-

ning single-photon detectors [79], or two scanning slits [39, 78], or array of single-photon

detectors [53, 80], or EMCCD cameras [56, 81, 82]. As a result, these measurement meth-

ods suffer from either too much loss of light, or strict alignment requirements, or multiple

measurements, which adversely affect the accuracy of measurements.

On the other hand, for the two-dimensional two-particle state, that is, the two-qubit

states (both pure and mixed), the entanglement quantifiers [159, 174] can be measured

by doing measurements on only one of the qubits [175–178], without requiring coinci-

dence detection. Furthermore, the idea has extended for the continuous variable pure

two-photon states, several two-photon properties such as two-photon angular Schmidt

spectrum [155, 156, 179], two-photon spatial Schmidt number [180], and momentum cor-

relations [181] can be measured by doing intensity measurements on only one of the sub-

systems. These measurement schemes based on intensity detection provide much better

accuracy than those based on coincidence detection.

In this chapter, utilizing the same physics, we propose a technique for measuring

the position-momentum EPR correlation that does not require coincidence detection. We

show that if the state of a pure two-photon field satisfies a specific set of conditions, then

the position-momentum EPR correlation can be obtained by doing the intensity mea-

surements on only one of the photons. Our technique works for a pure two-photon field,
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irrespective of whether it is separable or entangled. We experimentally demonstrate our

method for the pure two-photon field produced by type-I collinear SPDC. We obtain the

most accurate measurement of position-momentum EPR correlation reported so far.

The chapter has been adopted veritably from Ref. [182], and the contents are orga-

nized in the following manner. In section 4.2, we theoretically show that if a pure two-

photon state satisfies a certain set of conditions, then the position-momentum entangle-

ment can be certified by measuring cross-spectral density functions of one of the photons.

In section 4.3, we derive the position and momentum wavefunctions of the two-photon

field produced by type-I collinear SPDC and show that these wavefunctions satisfy the

conditions required for our proposed scheme. In section 4.4, we present our experimen-

tal setup and results. In section 4.5, we outline the advantage of our method over the

existing coincidence methods. In section 4.6, we present the numerical simulations for

showcasing the suitability of our technique for mixed two-photon states. In section 4.7,

we discuss the practical implications of the demonstrated technique. In section 4.8, we

summarize the chapter.

4.2 Entanglement certification through single-photon cross-spectral

density function measurement

Consider |Ψ〉 represent the state of a pure two-photon field or a pure two-photon state,

and it can be written in the transverse momentum basis as

|Ψ〉 =
¨

dp1dp2ψ(p1,p2) |p1,p2〉 . (4.1)

Here, p1 ≡ (p1x, p1y) and p2 ≡ (p2x, p2y) are the transverse momenta of the first and

the second photon, respectively, |p1,p2〉 is the two-photon state, and ψ(p1,p2) represents

the two-photon transverse-momentum wavefunction. Now if second photon is detected

with transverse momentum p2 = 0, then the conditional momentum probability distri-
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bution P(p1|p2 = 0) of the first photon is given by

P(p1|p2 = 0) = |ψ(p1,p2 = 0)|2. (4.2)

Now, the momentum cross-spectral density function of the first photon can be calcu-

lated as W(p1,p′

1) = 〈Ψ| E
(+)
1 (p1)E

(−)
1 (p′

1) |Ψ〉 [61], where E
(+)
1 (p1) and E

(−)
1 (p′

1) are the

negative- and positive-frequency parts of the electric field operators respectively. For

p′

1 = −p1, we have

W(p1,−p1) =

¨

ψ∗(p1,p2)ψ(−p1,p2)dp2. (4.3)

Next, we find that if the two-photon wavefunction satisfies the following condition.

ψ∗(p1,p2)ψ(−p1,p2) ∝ |ψ(p1,p2 = 0)ψ(p1 = 0,p2)|2, (4.4)

then using Eqs. (4.2) and (4.3), one can show that

W(p1,−p1) ∝ P(p1|p2 = 0). (4.5)

We note that the condition in Eq. (4.4) can be satisfied by both separable and inseparable

pure two-photon wavefunctions. Eq. (4.5) is the main theoretical result of this chapter.

It states that as long as a two-photon state is pure, whether separable or entangled, and

satisfies the condition in Eq. (4.4), the momentum cross-spectral density function of the

first photon remains proportional to its conditional momentum probability distribution

function. This implies that the standard deviations of W(p1,−p1) and P(p1|p2 = 0) are

equal and that by measuring the standard deviation of W(p1,−p1), one can obtain the

standard deviation of P(p1|p2 = 0). We denote the standard deviation of the conditional

x-momentum of the first photon by ∆(p1x|p2x = 0).

Now, by writing the two-photon wavefunction of Eq. (4.1) in the position basis and

proceeding in the similar manner, we can show that if the two-photon position wave-
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function ψ(ρ1,ρ2) satisfies the condition

ψ∗(ρ1,ρ2)ψ(−ρ1,ρ2) ∝ |ψ(ρ1,ρ2 = 0)ψ(ρ1 = 0,ρ2)|2, (4.6)

where ρ1 ≡ (x1, y1) and ρ2 ≡ (x2, y2) are the transverse position vectors of the first and

the second photon, then the position cross-spectral density function W(ρ1,−ρ1) of the

first photon is proportional to its conditional position probability distribution function

P(ρ1|ρ2 = 0), that is,

W(ρ1,−ρ1) ∝ P(ρ1|ρ2 = 0). (4.7)

Thus, by measuring the standard deviation of W(ρ1,−ρ1), one can obtain the standard

deviation of P(ρ1|ρ2 = 0). We denote the standard deviation of the conditional x-position

of the first photon by ∆(x1|x2 = 0). We note that although the above analysis has been

presented with respect to making measurements on the first photon, we obtain the same

result even when analyzed with the second photon. Now, it is known that if the two-

photon wavefunction is separable, then the product U of the conditional uncertainties

satisfies the Heisenberg uncertainty relation, that is,

U ≡ ∆(x1|x2 = 0)∆(p1x|p2x = 0) > 0.5h̄. (4.8)

However, a violation of this inequality implies that the two-photon wavefunction is non-

separable and that the two photons are entangled having EPR correlation in position-

momentum variables [33]. Thus, one can certify the position-momentum entanglement

by doing cross-spectral density function measurements on one of the photons.
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4.3 Derivation of two-photon spatial wavefunction in collinear

type-I SPDC

We now derive position and momentum wavefunctions of the two-photon field produced

by type-I SPDC process. We follow the calculations presented in Ref. [92, 183, 184]. We

have already derived the interaction Hamiltonian Ĥ(t′) in section 1.8 is given by

Ĥ(t′) =
ǫ0

2

ˆ

V
χ(2)V̂

(+)
p (r, t′)V̂(−)

s (r, t′)V̂(−)
i (r, t′)d3r+ H.c, (4.9)

where χ(2) and V denote the second order susceptibility and interaction volume of the

nonlinear crystal, respectively. V̂
(+)
j (r, t′) and V̂

(−)
j (r, t′) are the positive and negative

complex analytic field operators of the field with j = p, s and i corresponding to the

pump, signal and idler, respectively. The field operators are represented in the plane-

wave or transverse wave-vector basis in the following manner

V̂
(+)
p (r, t′) =

ˆ ∞

−∞

ApU(qp, ωp)e
i(qp·ρ+kpzz−ωpt′)d2qpdωp,

V̂
(+)
s (r, t′) =

ˆ ∞

−∞

A∗
s â†

s (qs, ωs)e
−i(qs·ρ+kszz−ωst′)d2qsdωs,

V̂
(−)
i (r, t′) =

ˆ ∞

−∞

A∗
i â†

i (qi, ωi)e
−i(qi·ρ+kizz−ωit

′)d2qidωi.

Here r ≡ (ρ, z), kj ≡ (qj, kjz), and U(qp, ωp) represents the pump field in the transverse

wave-vector basis and it is intense enough to be treated as a classical pump. Now, we

substitute V̂
(+)
p (r, t′), V̂

(−)
s (r, t′) and V̂

(−)
i (r, t′) in Eq. (4.9) and it takes the form

Ĥ(t′) =
ApA∗

s A∗
i ǫ0χ(2)

2

ˆ

V
d2ρdz

˚

d2qpd2qsd
2qi

˚

dωpdωsdωiU(qp, ωp)â
†
s (qs, ωs)

× â†
i (qi, ωi)e

[i(qp−qs−qi)·ρ+i(kpz−ksz−kiz)z]e−i(ωp−ωs−ωi)t
′
+ H.c. (4.10)
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Now using the interaction picture in time-dependent perturbation theory we write the

two-photon state |ψ(t′ = 0)〉 at t′ = 0 in the following form [185, 186]

|ψ(t′ = 0)〉 =
[

1 +

(−i

h̄

)
ˆ 0

−tint

dt′Ĥ(t′) +
(−i

h̄

)2 ˆ 0

−tint

dt′
ˆ t′

−tint

dt′′Ĥ(t′)Ĥ(t′′) + ...

]

× |ψ(−tint)〉, (4.11)

where |ψ(−tint)〉 = |vac〉s |vac〉i is the two-photon state before the SPDC process, where

both signal and idler photons are in the vaccum state. We assume that the parametric in-

teraction is weak and restrict the perturbative expansion in Eq. (4.11) upto second term.

The first term represents the vacuum state and it can be ignored because it does not con-

tribute in photon detection. Now, we write the second term |ψ〉 as

|ψ〉 = ApA∗
s A∗

i ǫ0χ(2)

2ih̄

ˆ 0

−tint

dt′
¨

d2ρ

ˆ L/2

−L/2
dz

˚

d2qpd2qsd
2qi

˚

dωpdωsdωi

× U(qp, ωp)e
[i(qp−qs−qi)·ρ]+i(kpz−ksz−kiz)ze−i(ωp−ωs−ωi)t

′
â†

s (qs, ωs)â
†
i (qi, ωi)|vac〉s |vac〉i .

(4.12)

Here, â†
s (qs, ωs)â†

i (qi, ωi)|vac〉s |vac〉i = |qs, ωs〉s|qi, ωi〉i represents the two-photon state,

where |qs, ωs〉s is the state of the signal photon with transverse wave-vector qs and fre-

quency ωs, |qi, ωi〉i is the state of the idler photon with transverse wave-vector qi and

frequency ωi. We assume that the time scale tint is much larger than that of the down-

conversion process and smaller than the time interval between two subsequent down-

conversion events. For SPDC experiment with a nonlinear crystal of thickness few mil-

limeters and pump power of few tens of milliwatts, tint is of the order of picoseconds

and the separation between two successive down-conversion events varies from millisec-

onds to microseconds [12]. Thus, we perform the integration over dt′ from −∞ to ∞ in

Eq. (4.12), and obtain
´ ∞

−∞
ei(ωp−ωs−ωi)t

′
dt′ = δ(ωp − ωs − ωi). Next, we assume that the

spatial extent of the pump field is much smaller than the area of the nonlinear crystal and

the limit of ρ extends from −∞ to ∞ and it yields
´ ∞

−∞
ei(qp−qs−qi)·ρd2ρ = δ(qp − qs − qi).

We evaluate the integral with respect to dz over the length of the crystal L and find



64 Measurement of spatial entanglement in two-photon field

´

L
2

− L
2

ei(kpz−ksz−kiz)zdz = sinc (∆kL/2), where ∆k = kpz − ksz − kiz. The above Eq. (4.12)

takes the form

|ψ〉 = A

˚

d2qpd2qsd
2qi

˚

dωpdωsdωiδ(qp − qs − qi)δ(ωp − ωs − ωi)

× U(qp, ωp) sinc

(

∆kL

2

)

|qs, ωs〉s|qi, ωi〉i. (4.13)

All the constants are absorbed in A. After performing integration over qp and ωp, we

assume that both signal and idler photons have a very narrow frequency bandwidth

around the central frequency ωp/2. In the experiment, we achieve this by introducing

narrow wavelength filters before the detectors. The two-photon state becomes

|ψ〉 = A

¨

d2qsd
2qiU(qs + qi) sinc

(

∆kL

2

)

|qs〉s|qi〉i. (4.14)

This is the general expression for a two-photon state produced by SPDC process in the

transverse wave-vector basis. We now write the corresponding two-photon wavefunc-

tion

ψ(qs, qi) = AU(qs + qi) sinc

(

∆kL

2

)

. (4.15)

From now on we only work with collinear type-I phase-matching [187] within paraxial

approximation, and under this condition, the function sinc (∆kL/2) is routinely approx-

imated by a Gaussian function of form exp
[

−|qs − qi|2σ2
0 /4

]

[52, 56, 57], σ0 =
√

0.455Lλp

2π ,

λp = 2π/kp is the pump wavelength.

ψ(ps,pi) = A exp
[

− (pi+ps)2w2
0

4h̄2

]

exp
[

− |pi−ps|2σ2
0

4h̄2

]

, (4.16)

where w0 is the pump beam waist, ps ≡ qsh̄ ≡ (psx, psy) and pi ≡ qih̄ ≡ (pix, piy) are the

transverse momenta of the signal and idler photons, respectively. By taking the Fourier

transform of the wavefunction given in Eq. (4.16), we write the two-photon wavefunction
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in the position basis as

ψ(ρs,ρi) = A′ exp
[

− (ρi+ρs)2

4w2
0

]

exp
[

− |ρi−ρs|2
4σ2

0

]

. (4.17)

Here, A′ is a normalization constant, ρs ≡ (xs, ys) and ρi ≡ (xi, yi) are the transverse

positions of the signal and idler photons at the crystal plane. We note that the above

wavefunctions ψ(ps,pi) and ψ(ρs,ρi) satisfy the conditions given in Eqs. (4.4) and (4.6),

respectively.

4.4 Experiment and Results

Next, we present our experimental results demonstrating how the conditional position

and momentum uncertainties can be obtained by measuring the cross-spectral density

functions of just the signal photon. Figures 4.1(a)-4.1(c) show the schematics of our ex-

perimental setup. An ultraviolet (UV) Gaussian pump beam of wavelength λp = 405 nm

and beam waist w0 = 388 µm is incident on a 2 mm thick β−barium borate (BBO) crystal

and produces two-photon state using SPDC with the type-I collinear phase-matching.

Figure 4.1(c) shows an inversion-based interferometer that we use for measuring the

cross-spectral density functions [155, 157]. Figures 4.1(a) and 4.1(b) show the lens con-

figurations for imaging, respectively, the crystal plane and the Fourier plane of the crys-

tal onto an EMCCD camera having 512 × 512 pixels and 60 second acquisition time.

For measuring the position cross-spectral density function of the signal photon, we use

the configuration of Fig. 4.1(a) with f1 = 10 cm and f2 = 40 cm and image the crys-

tal onto the EMCCD plane, kept at 40 cm from f2, with a magnification M = 4. We

take (xs, ys) and (x̃s, ỹs) to be the position coordinates at the crystal plane and at the

EMCCD plane, respectively. The two sets of coordinates are related as x̃s = Mxs and

ỹs = Mys. The intensity Iδ
out(x̃s, ỹs) of the output interferogram at the EMCCD plane

is given by Iδ
out(x̃s, ỹs) = k1 I(x̃s, ỹs) + k2 I(−x̃s, ỹs) + 2

√
k1k2W(x̃s, ỹs,−x̃s, ỹs) cos δ [155].

Here, k1 and k2 are the scaling constants, while k1 I(x̃s, ỹs) and k2 I(−x̃s, ỹs) are the in-

tensities at the EMCCD plane coming through the two arms of the interferometer. The
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FIGURE 4.1: (a) Lens configuration for measuring position correlation. (b) Lens configuration

for measuring momentum correlation. (c) Inversion-based interferometer for measuring position

and momentum cross-spectral density functions. B.S: Beam Splitter, T.S: Translational Stage, F: an

interference filter of 10 nm spectral width centered at 810 nm. (d) and (e) The two interferograms

recorded at δc = 0 and δd = π with the configuration in Fig. 1(a). (f) The difference intensity image

∆I(x̃s, ỹs). (g) Experimental and theoretical conditional probability distribution P(x̃s|x̃i = 0). (h)

and (i) The two interferograms recoded at δc = 0 and δd = π with the configuration in Fig.

1(b). (j) The difference intensity image ∆I( p̃sx, p̃sy). (k) Experimental and theoretical conditional

probability distribution P( p̃sx| p̃ix = 0).

quantity δ is the phase difference between the two interferometric arms. If we take two

interferograms Iδc
out(x̃s, ỹs) and Iδd

out(x̃s, ỹs) at δ = δc and δ = δd, respectively, then it can be

shown that the difference intensity ∆Iout(x̃s, ỹs) = Iδc
out(x̃s, ỹs)− Iδd

out(x̃s, ỹs) is proportional
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to the position cross-spectral density function, that is, ∆Iout(x̃s, ỹs) ∝ W(x̃s, ỹs,−x̃s, ỹs)

[155, 157]. Figures 4.1(d) and 4.1(e) show the two experimentally measured interfero-

grams at δ = δc ≈ 0 and δ = δd ≈ π, respectively, and Fig. 4.1(f) shows the differ-

ence intensity ∆Iout(x̃s, ỹs). From Eq. (4.7), we have that W(x̃s, ỹs,−x̃s,−ỹs), is propor-

tional to the conditional position probability distribution function of the signal photon,

that is, P(x̃s, ỹs|x̃i = 0, ỹi = 0) ∝ W(x̃s, ỹs,−x̃s,−ỹs). Therefore, we obtain the one-

dimensional conditional position probability distribution function P(x̃s|x̃i = 0) by aver-

aging ∆Iout(x̃s, ỹs) over the ỹs-direction and plotting it in Fig. 4.1(g). Using Eq. (4.17) and

the relevant experimental parameters, we calculate the theoretical P(x̃s|x̃i = 0) and plot

it in Fig. 4.1(g) (solid curve). We scale the P(x̃s|x̃i = 0) plots in Fig. 1(g) such that the

maximum value is one. We fit the experimental P(x̃s|x̃i = 0) with a Gaussian function

and find the standard deviation to be 26.25 µm. The standard deviation of the theoreti-

cal plot is 30.6 µm. Now, we use x̃s = Mxs and obtain the experimental and theoretical

values of ∆(xs|xi = 0) to be 6.56 µm and 7.65 µm, respectively.

For measuring the momentum cross-spectral density function of the signal photon,

we use the configuration of Fig. 4.1(b) with f1 = 5 cm, f2 = 10 cm, and f3 = 30 cm. The

effective focal length of this combination is fe = 15 cm. The EMCCD is kept at 30 cm from

f3, which is the Fourier plane of this configuration. We take (psx, psy) to be the transverse

momentum at the crystal plane and ( p̃sx, p̃sy) is the position coordinate at the EMCCD

plane. These coordinates can be shown to be related as psx = k0 h̄
fe

p̃sx and psy = k0 h̄
fe

p̃sy

[56], where k0 = 2π
λ0

. The intensity Iδ
out( p̃sx, p̃sy) of the output interferogram at the EM-

CCD plane in this case can be written as Iδ
out( p̃sx, p̃sy) = k1 I( p̃sx, p̃sy) + k2 I(− p̃sx, p̃sy) +

2
√

k1k2W( p̃sx, p̃sy,− p̃sx, p̃sy) cos δ [155]. Here, k1 I( p̃sx, p̃sy), and k2 I(− p̃sx, p̃sy) are the in-

tensities at the EMCCD plane coming through the two interferometric arms. Just as

discussed above, the difference intensity ∆Iout( p̃sx, p̃sy) = Iδc
out( p̃sx, p̃sy) − Iδd

out( p̃sx, p̃sy)

is proportional to the cross-spectral density function W( p̃sx, p̃sy,− p̃sx, p̃sy) [155,157]. Fig-

ures 4.1(h) and 4.1(i) show the two experimentally measured interferograms at δ = δc ≈ 0

and δ = δd ≈ π, respectively, and Fig. 4.1(j) shows the difference intensity ∆Iout( p̃sx, p̃sy).

From Eq. (4.5), we have that P( p̃sx, p̃sy|p̃ix = 0, p̃iy = 0) ∝ W( p̃sx, p̃sy,− p̃sx,− p̃sy). There-
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fore, we obtain the one-dimensional conditional probability distribution function P( p̃sx|p̃ix

= 0) by averaging ∆Iout( p̃sx, p̃sy), over p̃sy-direction and plotting it in Fig. 4.1(k). Using

Eq. (4.16) and the relevant experimental parameters, we calculate the theoretical P( p̃sx|p̃ix

= 0) at the EMCCD plane and plot it in Fig. 4.1(k) (solid curve). We scale the P( p̃sx|p̃ix =

0) plots in Fig. 4.1(k) such that the maximum value is one. We fit the experimental

P( p̃sx|p̃ix = 0) with a Gaussian function and find the standard deviation to be 49.5 µm.

The standard deviation of the theoretical plot is 49.8 µm. Using psx = k0 h̄
fe

p̃sx, we obtain

the experimental and theoretical values of ∆(psx|pix = 0) to be 2.55 × 10−3h̄ µm−1 and

2.57 × 10−3h̄ µm−1, respectively.

As defined in Eq. (4.8), the experimentally measured value of the conditional un-

certainty product Uex is 1.67 × 10−2h̄. This is much smaller than 0.5h̄ and thus implies

a strong EPR correlation between the two entangled photons. We find the theoretical

conditional uncertainty product Uth to be 1.96 × 10−2h̄, and we thus find a good match

between the theory and experiments.

We note that our experiment uses collinear phase-matching and the interferogram

recorded by the camera is the sum of the interferograms generated by both signal and

idler fields. However, since signal and idler photons are identical in their spatial degree

of freedom, the functional form of individual interferograms generated by signal and

idler fields is identical to that of the recorded interferogram.

4.5 Advantages over existing measurement schemes

Now, in order to quantify the accuracy of our measurement scheme, we use the quantity

F ≡ |Uth−Uex|
Uth

. We note that a smaller value of F implies better accuracy of EPR cor-

relation measurements. For our experimental results, we obtain F = 0.14. This value

of F obtained through our measurement scheme is much smaller than the previously

reported values of 0.27 in Ref. [82], 0.43 in Ref. [56], 0.66 in Ref. [39], 1.9 in Ref. [52],

and 3.76 in Ref. [53]. For a fair comparison we ensure that the above-monetioned coinci-
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dence detection schemes in Refs. [39, 52, 53, 56, 82] have used collinear SPDC and double

gaussian wavefunction for the two-photon state that are similar to our experimental con-

figuration and theoretical modeling. Another quantity is quite often used for quantifying

the EPR correlation measurements. It is called the degree of violation and is defined as

D =
(

0.5h̄/Uexp

)2
. The degree of violation D does not quantify the measurement ac-

curacy but gives an estimate of the degree with which the Heisenberg bound of 0.5h̄ is

violated. For our experimental measurements, D = 896, whereas the degree of violations

reported earlier include 576 in Ref. [82], 380 in Ref. [56], 42 in Ref. [52], 25 in Ref. [39], and

4 in Ref. [53]. Thus we report not only the most accurate EPR correlation measurements

but also the highest degree of violation.

4.6 Suitability of the technique for mixed two-photon states

So far we have demonstrated that our technique measures EPR correlations with very

good accuracy for pure two-photon states that satisfy the conditions given in Eqs. (5.12)

and (4.6). Next, we numerically analyse the suitability of our technique for mixed

two-photon states. In the case of mixed two-photon states, the widths W(xs,−xs) and

W(pxs,−pxs) are not necessarily equal to ∆(xs|xi = 0) and ∆(pxs|pxi = 0) respectively.

Suppose the widths of W(xs,−xs) and W(pxs,−pxs) are µx and µpx , respectively. Then

the error E inherent in the scheme can be quantified as

E ≡ |Uth − µxµpx |
Uth

× 100%, (4.18)

where Uth = ∆(xs|xi = 0)∆(pxs|pxi = 0). The quantity E varies from 0 to 100%, and the

higher values of E implies higher inaccuracies of the scheme for the mixed two-photon

states.

There are two broad schemes by which one can generate mixed two-photon states.

One is by introducing turbulence in the path of the generated pure two-photon state and

the other one is by generating the two-photon states using a spatially partially coherent
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FIGURE 4.2: (a) Plot of error E as a function of the Fried parameter r0 and (b) Plot of error E as a

function of the transverse coherence length σc of the pump field.

pump field. Next, for these two schemes of generating the mixed two-photon states, we

numerically analyse how the inherent error E of our scheme changes as a function of the

mixedness of the two-photon state.

4.6.1 Introducing mixedness through turbulence

We consider the situation in which both signal and idler photons pass through a planar

turbulence medium right after the crystal plane. The turbulence introduces statistical

randomness in both signal and idler photon fields. As a result, the two-photon state

produced by SPDC does not remain pure and thus does not satisfy the conditions in

Eqs. (4.4) and (4.6). We write the mixed two-photon state thus produced using the two-

photon cross-spectral density function in the position basis as

Wtp(ρs1
,ρi1 ,ρs2 ,ρi2) = ψ∗(ρs1

,ρi1)ψ(ρs2 ,ρi2)Wturb(ρs1
,ρs2 ,ρi1 ,ρi2), (4.19)

where ψ∗(ρs1
,ρi1)ψ(ρs2 ,ρi2) is the two-photon cross-spectral density function just before

the turbulence, and the influence of turbulence is captured by the cross-spectral density

function Wturb(ρs1
,ρs2 ,ρi1 ,ρi2) = exp

[

−6.88[|ρs2 − ρs1
|2 + |ρi2 − ρi1 |2]/(2r2

0)
]

[188, 189],

where r0 is the so-called Fried parameter. Smaller values of r0 implies higher turbulence

strength, with r0 = 0 implying infinite turbulence and a completely mixed state and

r0 = ∞ implying no turbulence and thus a pure two-photon state.



4.6 Suitability of the technique for mixed two-photon states 71

From the above two-photon cross-spectral density function Wtp(ρs1
,ρs2 ,ρi1 ,ρi2), we

numerically calculate the one-dimensional conditional probability P(xs|xi = 0) and the

cross-spectral density function W(xs,−xs) and evaluate their respective widths ∆(xs|xi =

0) and µx as a function of r0 (see Appendix A section A.0.1.). We next find the correspond-

ing two-photon momentum cross-spectral density function Wtp(ps1
,pi1 ,ps2 ,pi2) using the

following equation

Wtp(ps1
,pi1 ,ps2 ,pi2) =

ˆ

Wtp(ρs1
,ρi1 ,ρs2 ,ρi2)e

−i(ρs1
·ps1

+ρi1
·pi1

−ρs2
·ps2

−ρs2
·ps2

)/h̄dρs1
dρs2 dρi1 dρi2 .

(4.20)

We then calculate the one-dimensional momentum probability distribution function P(pxs|pxi =

0) and the cross-spectral density function W(pxs,−pxs) of the signal photon and thereby

the widths ∆(pxs|pxi = 0) and µpx at different r0 (see Appendix A section A.0.1). Fi-

nally, we evaluate E as a function of r0 and plot it in Fig. 4.2(a). We find that E decreases

with increasing r0. In other words, E decreases with decreasing turbulence strength. We

note that the realistic turbulences are distributed and the Fried parameter typically varies

from r0 = 4 mm to 30 mm [190, 191]. We expect our results to remain valid even for a

distributed turbulence, and from Fig. 4.2(a), we note that in the range from r0 = 4 mm to

30 mm, the error E is less than 10%. We thus expect our technique to be practically useful

even for measuring the EPR correlations of mixed two-photon state and thus be useful

for experimental scenarios related to propagation of entangled photons through random

media [189].

4.6.2 Introducing mixedness by using a spatially partially coherent pump field

Next, we consider the situation in which the two-photon states is produced by SPDC

using a spatially partially coherent pump field. To keep the analysis simple, we consider

a Gaussian Schell Model (GSM) field [70] as the spatially partially coherent pump field.

The generated mixed two-photon state can be described in terms of the following two-

photon cross-spectral density function [192]:
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Wtp(ρs1
,ρi1 ,ρs2 ,ρi2) = A exp

[

−|ρs1
+ ρi1 |2 + |ρs2 + ρi2 |2

4w2
0

]

× exp

[

−|ρs2 + ρi2 − ρs1
− ρi1 |2

2σ2
c

]

exp

[

−|ρs1
− ρi1 |2 + |ρs2 − ρi2 |2

4σ2
0

]

, (4.21)

where w0 and σc are the beam-waist of the pump at the crystal plane and the transverse

spatial coherence length of the pump at the crystal plane, respectively. The transverse

spatial coherence length of the pump σc ranges from 0 to ∞, with σc = 0 implying a com-

pletely mixed state and σc = ∞ implying a pure state. Using Eq. (4.21) we numerically

calculate the one-dimensional conditional probability P(xs|xi = 0) and the cross-spectral

density function W(xs,−xs) as a function of σc (see Appendix A section A.0.2 for de-

tails). Next, using Eq. (4.21), we calculate two-photon momentum cross-spectral density

function Wtp(ps1
,pi1 ,ps2 ,pi2) and thereby evaluate P(pxs|pxi = 0) and W(pxs,−pxs) as a

function of σc (see Appendix A section A.0.2 for details). Finally, using Eq. (4.18), we eval-

uate E and plot it as a function of σc in Fig. 4.2(b). We find that the error E decreases with

increasing σc, that is, the error decreases as the purity of the two-photon state increases.

From Fig. 4.2(b), we find that even with σc = 1.6 mm, which indicates substantial partial

coherence, the error E is less than 10%. This implies that our scheme could be useful even

for mixed two-photon states and thus be relevant for experimental scenarios involving

spatially entangled mixed two-photon states [78].

4.7 Practical implications

We note that several quantum information applications require either the knowledge

or measurement of position and momentum conditional probability distribution func-

tions. For example, the resolution of a coincidence imaging scheme relies on conditional

position and momentum uncertainties [43] and the communication protocols based on

position-momentum entanglement require the measurement of conditional position and

momentum probability distribution functions [52,54]. Thus from the application perspec-
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tive, it is important to have a technique that measures the EPR correlations accurately.

So far many coincidence imaging and communication protocols [43, 45, 47, 51, 52, 171]

have utilized the position-momentum entanglement in the two-photon state described

by position and momentum wavefunctions given in Eqs. (4.16) and (4.17) respectively.

Hence our measurement technique has direct applications in the above imaging and com-

munication protocols. Moreover, we note that two-photon wavefunctions produced by

non-collinear SPDC [193, 194], type-II SPDC [195], and spontaneous four-wave mixing

(SFWM) [83,196] processes satisfy the set of conditions given in Eqs. (4.4) and (4.6). Thus

our technique is applicable for certifying position-momentum entanglement in such pro-

cesses and these processes cover most of the existing optical platforms for generating

position-momentum entangled states. In this article, although we have demonstrated

our scheme for the position-momentum EPR correlations, it can be extended for measur-

ing EPR-correlations in other continuous variables such as time-energy [41, 89, 172] and

angle-OAM [40].

4.8 Summary

In summary, we have demonstrated a scheme for measuring two-photon position−momentum

EPR correlations that does not require coincidence detection. Our method works for any

pure two-photon state, irrespective of whether the state is separable or entangled. We

have experimentally demonstrated this technique with the pure two-photon state pro-

duced with collinear phase-matching and have obtained the most accurate measurement

of position-momentum EPR correlations reported so far. We have also presented a nu-

merical analysis to study the suitability of this technique for a broad range of mixed

two-photon states that do not satisfy the requisite conditions. Therefore, we expect our

work to have practical implications for a wide range of experimental configurations and

processes employed in continuous-variable quantum information applications.





Chapter 5

Applications of spatial coherence in

optical field

5.1 Introduction

Propagation of optical fields through random media is an important subject of research

[197–200] due to its implications for a wide range of applications. For example, per-

forming imaging, free-space optical communication, navigation in foggy environments

are inevitable in many realistic scenarios, including railways, defence, medical, and road

transports. The difficulties in performing any task through random media arise due to the

inhomogeneities in the media, introducing random phase variations at different spatial

locations in the light field passing through it. If the light field is spatially coherent, these

random phase variations result in a random interference pattern known as the speckle

pattern [201]. As a consequence, the information carried by the field is superimposed

with the speckle pattern, and it gets corrupted. This severely affects the performance of

many real-world applications. We now only focus on the difficulties involved in imaging

and free-space optical communication through scattering or turbulent media.

Over the years, several imaging techniques have been proposed and demonstrated
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for addressing the above-mentioned speckle issue in the presence of scattering media.

These techniques can be categorized into two sets. The first set of techniques use spa-

tially completely coherent light sources such as lasers for illumination. In this set of

techniques, one tries to minimize the speckle effects either by imaging with ballistic pho-

tons [26, 200, 202, 203], or by descrambling the phase of the scattered light field using a

hologram or a spatial light modulator (SLM) [204–207]. Such techniques either require

prior knowledge of the scattering media or find difficulties in real-time imaging. The

other set of techniques for imaging through scattering media is based on using spatially

partially coherent light sources. In this set of techniques, the speckle pattern gets re-

duced as the spatial coherence length of the illuminating field becomes smaller. More-

over, such techniques provide real-time imaging and do not require prior knowledge of

the scattering medium. In chapter 2, we have discussed different approaches for gener-

ating spatially partially coherent light fields. The most common technique involves intro-

ducing randomness in a spatially coherent laser field by using either an acousto-optical

cell [113], a rotating ground glass plate [114, 116], or an SLM [122, 123]. A more recent

approach involves using random lasers [21,23] with small spatial coherence lengths. The

other approach is to use light-emitting diodes (LEDs) or thermal sources [130,134], which

are spatially completely incoherent primary light sources. Although the techniques based

on spatially completely coherent sources such as lasers are useful for some applications

requiring intense illumination, they still have limited applicability in full-field imaging

due to speckle effects. As a result, the techniques based on using spatially partially

coherent sources are being preferred for imaging two-dimensional objects in scattering

media [21–23, 208–210]. However, the spatial coherence length of most partially coher-

ent sources increases upon propagation, causing speckle effects to become progressively

pronounced. Therefore, such sources become unsuitable for imaging spatially separated

transverse planes along the propagation direction.

Recently, structured fields that are spatially completely coherent, such as Laguerre

Gaussian (LG) and Hermite Gaussian (HG) modes have gained attention due to their

implications in optical communication protocols [211–220]. The structure in the inten-
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sity profile of such fields is used for encoding information in the long-distance free-space

optical communication [190, 191, 221]. However, the presence of turbulence introduces

random phase fluctuations at different spatial locations in the field, which results in the

degradation of the intensity structures of such coherent fields. As a consequence, the

retrieval of information encoded in the intensity structures becomes difficult. For this

reason, the structures in a spatially perfectly coherent field become unsuitable for optical

communication in turbulent environments. On the other hand, it is now known that a

spatially partially coherent field is less affected by turbulence [97,222–225]. Furthermore,

theoretical studies have now shown that in the presence of turbulent environments, the

structures in the intensity profiles and in the cross-spectral density functions of a spa-

tially partially coherent field degrade less in comparison to the intensity structures of a

spatially perfectly coherent field [226–230]. This implies that the structural robustness

of the intensity profiles and the cross-spectral density functions of a spatially partially

coherent field could be utilized towards optical communication even in the presence of

a turbulent environment. To the best of our knowledge, no experimental demonstration

of structural robustness of the cross-spectral density function of such fields in turbulence

has been reported so far.

In this chapter, we overcome the above issues in imaging and optical communica-

tion through random media by adequately controlling the spatial coherence of the field.

First, we address the imaging of spatially separated transverse planes through scattering

environments by engineering the propagation of spatial coherence of the illuminating

source. We report a proof-of-principle experimental demonstration of imaging different

transverse planes with equal contrast over a distance of 40 cm along the propagation

direction. This is achieved using an earlier demonstrated source (in the previous chap-

ter 2) in which the spatial coherence is controlled in a manner that the spatial coherence

function remains propagation-invariant [128]. Next, we demonstrate a source in which

the propagation of spatial coherence is controlled to yield the minimum-possible spatial

coherence length at the plane of the object to be imaged. Using such a partially coher-

ent source, we demonstrate imaging different transverse planes along the propagation
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direction with the maximum possible contrast.

We then generate spatially partially coherent fields with custom-designed structure in

cross-spectral density function and demonstrate its structural robustness in turbulence to

overcome the difficulties in performing optical communication through turbulence. Sim-

ulating a planar turbulence with the help of an SLM, we show that for a given turbulence

strength, the structural robustness of a spatially partially coherent field increases as the

spatial coherence length of the field decreases.

The chapter has been adopted veritably from Ref. [231, 232], and the contents are or-

ganized in the following manner. Section 5.2 presents how to achieve enhanced imaging

in scattering environments by controlling the propagation of spatial coherence of the illu-

minating field. In section 5.2.1, we work out a formalism for controlling the propagation

of spatial coherence for a generic spatially partially coherent source. In section 5.2.2,

we model our earlier demonstrated spatially partially coherent source with propagation-

invariant spatial coherence using the above worked out formalism of propagation of

coherence. In section 5.2.3, we model a spatially partially coherent source, whose spa-

tial coherence can be controlled in a manner to yield the minimum possible coherence

length at a given transverse plane. Section 5.2.4 presents the details of our experiment.

In section. 5.2.5- 5.2.6, we demonstrate enhanced imaging of different transverse plane

by using two sources mentioned in sections 5.2.2 and 5.2.3. Section 5.3 demonstrates the

robustness of structured fields having partial spatial coherence and outline its implica-

tions in free-space communication through turbulence. In section 5.3.1, we describe the

propagation of our structured spatially partially coherent field. Section 5.3.2 describes

our experimental setup. In section 5.3.3- 5.3.4, we present the experimental results and

section 5.3.5 discusses the implication of structured spatially partially coherent fields in

optical communication. In section 5.4, we summarize the chapter.
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5.2 Enhanced imaging through controlling propagation of spa-

tial coherence

5.2.1 Theory: controlling the propagation of spatial coherence
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FIGURE 5.1: Schematic illustration of (a) a sptially partially coherent source, (b) a propagation-

invariant coherence (PIC) source, and (c) a minimum-possible coherence (MPC) source.

Figure 5.1(a) shows a generic spatially partially coherence source, in which a planar

monochromatic spatially completely incoherent source is kept at a distance u behind a

lens located at z = 0. We represent the transverse spatial location at z = −u by ρ′′ ≡

(x′′, y′′) and that at z = 0 and z = z by ρ′ ≡ (x′, y′) and ρ ≡ (x, y), respectively. The

primary incoherent source along with the lens constitutes our spatially partially coherent

source. Since our primary source is spatially completely incoherent, the cross-spectral
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density of the field at z = −u is given by

W(ρ′′
1 ,ρ′′

2 ; z = −u) = NIs(ρ
′′
1 ; z = −u)δ(ρ′′

1 − ρ′′
2 ), (5.1)

where Is(ρ′′
1 , z = −u) is the intensity of the primary source at z = −u and is given by

Is(ρ′′; z = −u) = A, if −s/2 < x′′ < s/2 and −s/2 < y′′ < s/2, else 0 with A being a

constant. N =
λ2

0
π (see Ref [20], section 5.5.4), where λ0 is the central wavelength. Follow-

ing section 1.3 of chapter 1, we write the cross-spectral density function W(ρ1,ρ2; z) of

the field at z in terms of the cross-spectral density function W(ρ′

1
,ρ′

2
; z = 0) of the field

at z = 0 right after the converging lens as

W(ρ1,ρ2; z) =
1

(λ0z)2
e

ik0
2z (ρ

2
2−ρ2

1)
¨

W(ρ′

1
,ρ′

2
; z = 0)e

ik0
2z (ρ

′2
2 −ρ′21 )e−

ik0
z (ρ2·ρ′

2
−ρ1·ρ′

1
)dρ′

1
dρ′

2
.

(5.2)

Here k0 = 2π/λ0 with λ0 being the central wavelength and ρ1 = |ρ1|, ρ2 = |ρ2|, etc. The

cross spectral density W(ρ′

1
,ρ′

2
; z = 0) after the lens can be calculated by propagating

the cross-spectral density at z = −u until z = 0 before the lens and then propagating it

through the lens. This way we obtain

W(ρ′

1
,ρ′

2
; z = 0) =

1

(λ0u)2
e

ik0
2u (ρ

′2
2 −ρ′21 )T∗(ρ′

1
)T(ρ′

2
)

¨

W(ρ′′

1
,ρ′′

2
; z = −u)e

ik0
2u (ρ

′′2
2 −ρ′′21 )

× e−
ik0
u (ρ′

2
·ρ′′

2
−ρ′

1
·ρ′′

1
)dρ′′

1
dρ′′

2
. (5.3)

Here T(ρ) is the amplitude transmittance function of the lens and is given by T(ρ) =

exp(−ik0ρ2/2 f ), where f is the focal length of the lens. Substituting the expressions for

the amplitude transmission function and also that of the cross-spectral density function

W(ρ′′

1
,ρ′′

2
; z = −u) of Eq. (5.1) into Eq. (5.3), evaluating the ρ′′

2 integral, and replacing ρ′′
1

by ρ′′, we can write Eq. (5.3) as

W(ρ′

1
,ρ′

2
; z = 0) =

AN

λ2
0u2

e
ik0
2 (ρ′22 −ρ′21 )(

1
u−

1
f )
ˆ

e−
ik0
u (ρ′

2
−ρ′

1
)·ρ′′

dρ′′. (5.4)
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Now, substituting Eq. (5.4) into Eq. (5.2), we obtain the cross-spectral density function

W(ρ1,ρ2; z) at z:

W(ρ1,ρ2; z) =
AN

λ2
0u2z2

e
ik0
2z (ρ

2
2−ρ2

1)
˚

e−
ik0
u (ρ′

2
−ρ′

1
)·ρ′′

e
− ik0

2∆(z)
(ρ′22 −ρ′21 )e−

ik0
z (ρ2·ρ′

2
−ρ1·ρ′

1
)

× dρ′′dρ′

1
dρ′

2
, (5.5)

where 1
∆(z)

= 1
f − 1

u − 1
z . This is the general expression for W(ρ1,ρ2; z). We note that

the lens is symmetric with respect to x′′ and y′′. Thus, W(ρ1,ρ2; z) can be written as

W(ρ1,ρ2; z) = W(x1, x2; z)W(y1, y2; z). For conceptual clarity, we numerically solve only

the x-integral which is given by

W(x1, x2; z) =

√
AN

λ0uz
e

ik0
2z (x2

2−x2
1)
¨ D/2

−D/2

ˆ s/2

−s/2
e−

ik0
u (x′2−x′1)x′′e

− ik0
2∆(z)

(x′22 −x′21 )e−
ik0
z (x2x′2−x1x′1)

× dx′′dx′1dx′2. (5.6)

The integral over x′′ needs to be evaluated over the source size, that is, from −s/2 to

s/2 while the integrals over x′1 and x′2 need to be evaluated over the size of the lens, which

we take to be D. We are interested in the cross-spectral density function that is symmetric

about the z-axis. Thus, by substituting x1 = x and x2 = −x and then evaluating the

x′′ integral, we obtain the following expression for the symmetric cross-spectral density

function W(x,−x; z) and the corresponding intensity I(x) = W(x, x; z):

W(x,−x; z) =

√
ANs

λ0uz

¨ D/2

−D/2
sinc

{

k0s

2u
(x′2 − x′1)

}

e
− ik0

2∆(z)
(x′22 −x′21 )e

ik0
z (x′2+x′1)xdx′1dx′2. (5.7)

I(x; z) =

√
ANs

λ0uz

¨ D/2

−D/2
sinc

{

k0s

2u
(x′2 − x′1)

}

e
− ik0

2∆(z)
(x′22 −x′21 )e−

ik0
z (x′2−x′1)xdx′1dx′2. (5.8)

The degree of coherence function |µ(x,−x, z)| is given by

|µ(x,−x, z)| = |µ(2x, z)| = W(x,−x, z)/I(x, z). (5.9)

We take the half-width σc of this function as the transverse spatial coherence length. We
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FIGURE 5.2: Plots of (a) intensity I(x) and (b) the degree of coherence |µ(2x)| of the PIC source for

various z values. (c)Plots of transverse spatial coherence length σc of the MPC source as a function

of z for various values of u. The minimum σc,min appears near z = v, where v is the image plane

of the primary incoherent source.

next evaluate µ(2x; z) and I(x; z) for two special cases.

5.2.2 Propagation-Invariant Coherence (PIC) source (u = f )

We consider the situation in which u = f , that is, when the primary incoherent source

is kept at the back focal plane of the lens. Figure 5.1(b) shows the configuration of the

source in this case. We have already shown in chapter 2 that when the aperture size of

the lens is infinite, the degree of coherence function |µ(2x; z)| and the intensity I(x; z)

become independent of z. Even when the aperture size is finite, the degree of coherence

function remains z-independent up to the distance given by zmax = D f /s. Therefore,

such sources are referred to as the propagation-invariant coherence (PIC) source. We

numerically evaluate Eqs. (5.8) and (5.9) for D = 2.5 cm, f = 10 cm s = 0.8 mm, and plot

I(x; z) and |µ(2x, z)| in Fig. 5.2(a) and Fig. 5.2(b), respectively, for various values of z. We

find that while the intensity profile of the source starts to broaden as a function of z, the

degree of coherence function remains independent of z, that is, it remains propagation

invariant up to 300 cm. Taking the distance to the first zero of |µ(2x; z)| function as σc, we

find it to be about 80 µm.
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5.2.3 Minimum-Possible Coherence (MPC) source (u > f )

Next, we consider the situation in which u > f (see Figure 5.1(c)). Using Eq. (5.9), we

numerically evaluate |µ(2x; z)| as a function of x, and taking the distance to its first zero

to be σc, we calculate and plot σc as a function of z for various values of u (see Fig. 5.2).

For a given u, σc decreases with z and reaches its minimum possible value σc,min near

z = v, where v is the image distance of our primary source. As u is decreased, v increases

and therefore the z value at which σc,min appears shifts to the right with σc,min remaining

almost constant. Thus, we refer to this source as minimum-possible coherence (MPC)

source. It can be used for imaging two-dimensional objects kept at z = v with maximum

possible imaging contrast. Furthermore, within the z-range over which σc,min remains

almost constant, a two-dimensional object could be placed at any z and be imaged with

maximum possible contrast by adjusting u in a way that σc,min appears at the given z. For

D = 2.5 cm, f = 10 cm s = 0.8 mm, σc,min changes from 6.5 µm to about 8.5 µm from

z = 25 cm to z = 35 cm. We note that when u approaches f , the MPC source becomes the

PIC source.

5.2.4 Experimental setup

We next present our experimental results demonstrating how PIC and MPC sources can

be used for imaging different transverse planes with enhanced imaging contrast through

scattering media. In our experiments, we use lab-synthesized ground glass plates and

stack together varying number of them in order to get scattering media of different scat-

tering strengths. We characterize the strength of thus-constructed scattering media in the

following manner. We make a laser beam pass through the scattering medium whose

strength we need to measure. We record the intensity of a small central portion of the

laser beam on a 50 × 50-pixel area of the CCD camera, kept at a distance of 30 cm from

the scattering medium. The measured intensity in the presence and in the absence of the

scattering medium is called I and I0, respectively. For our scattering media, the material

absorption is negligible; so any drop in the recorded laser intensity in the presence of a
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scattering medium is solely due to scattering. Therefore, we take the ratio I0/I of the two

intensities as the scattering strength of the medium and write it as α = I0
I . The quantity

can be shown to be related to the scattering coefficient µs as α = eµsd, where d is the thick-

ness of the scattering medium [233]. We note that in our experiments, we use scattering

media of varying scattering coefficient µs and thickness d. Therefore, for characterizing

the strength of our scattering media, α = eµsd is a more pertinent quantity instead of µs.

The larger values represent increased scattering strength, with α = 1 representing no

scattering.

5.2.5 Imaging with Propagation-Invariant Coherence (PIC) source

First, we present our experimental results of imaging through scattering medium in trans-

mitting configuration with a PIC source and compare its performance with that of a spa-

tially perfectly coherent source and a conventional partially coherent source wherein the

transverse spatial coherence length increases with propagation. Figure 5.3(a) shows the

schematic diagram of the experimental setup. A source kept at z = 0 illuminates a trans-

mission object kept at z = z. We use a 632-nm, 5-mW HeNe laser with a Gaussian beam

profile as a spatially coherent source, while we use an LED for the conventional source.

We consider the same LED as the primary source in the configuration of the PIC source,

as shown in Figs. 5.1(a). In the experiment, we use D = 2.5 cm, s = 0.8 mm and f = 10

cm, and λ0 = 632 nm. As a result, while the transverse spatial coherence length σc = 80

µm of the PIC source stays z-invariant for over 300 cm, the transverse spatial coherence

length of the conventional source increases with z as σc =
λ0z

s . After transmitting through

the object, the light from the source first encounters a scattering medium before getting

imaged at the CCD camera. The CCD camera has 1024 × 1280 pixels with the size of each

pixel being 5 µm, the distance d between the scatterer and the object is 3.5 cm, and the

focal length f of the imaging lens is 5 cm, which images the object with a magnification

of about 3. In order to avoid the saturation of the camera, we use a neutral density (ND)

filter of optical density (OD) equal to 1, placed immediately before the camera. In order to

mimic objects at different transverse planes along the direction of propagation, we keep
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FIGURE 5.3: (a) Schematic of the setup for imaging in transmitting configuration. (b) Image of the

object in the absence of scattering. (c) Images of the object and (d) imaging contrast obtained with

the three different sources at different z and α values. (e) Schematic of the setup for imaging in

reflecting configuration. (f) Image of the object in the absence of scattering. (g) Images of the object

in reflecting configuration and (h) Imaging contrast obtained with the three different sources at

different z and α values.

our source at various longitudinal distances from the object. This way, the imaging con-

dition and the distance between the object and the scattering medium remain constant

when imaging various transverse planes with different sources. Figure 5.3(b) shows the

image of the object in the absence of any scattering. Figure 5.3(c) shows images of the
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object obtained with the three sources at three different z values and with two different

scattering strengths. In order to get a quantitative estimate of the image quality, we use

image contrast defined as C = (Imax − Imin)/(Imax + Imin), where Imax and Imin are the

maximum and minimum intensity respectively. For calculating the contrast, we first se-

lect an area in the image, as shown by the dotted square, and then define Imax and Imin

as the average pixel-intensities in the bright and dark regions within the square, respec-

tively. We calculate the contrast of each image shown in Fig. 5.3(c) and plot it as a function

of z and for the three sources in Fig. 5.3(d).

The results in Fig. 5.3(c) and Fig. 5.3(d) demonstrate how a PIC source performs imag-

ing of different transverse planes with almost equal contrast in the presence of scattering.

We find that the measured image contrast at z = 10 cm is the same with both PIC and

conventional sources, and for the two α values, the contrast is about 50% and 25%, re-

spectively. As z is increased to 50 cm, the contrast with the PIC source remains invariant

at 50% and 25% while the contrast with the conventional source drops down to about

30% and 4%, respectively, for the two α values. This is because σc of both the sources are

very similar at z = 10 cm. However, for z > 10 cm, σc of the PIC source remains invariant

while that of the conventional source increases, causing the imaging contrast to decrease.

As expected, the speckle effect is more prominent for the spatially coherent source and in-

creases with increasing scattering strengths. We note that although PIC-like sources have

been earlier used in microscopy [24], here we demonstrated their usefulness in enhancing

the imaging contrast at various transverse planes through a scattering medium.

Although imaging in transmitting configuration is important, many real-life scenarios

require imaging in reflecting configuration, where both the source and the detector are

on the same side of the object. So, next, we demonstrate the imaging capabilities of our

PIC source in a reflecting configuration. Figure 5.3(e) shows the schematic diagram of

the experimental setup. A source kept at z = 0 illuminates the object at z = z. The

light from the source first passes through a beam splitter and then after transmitting

through the scatterer illuminates the object. The reflected light from the object passes

through the scatterer, gets reflected by the beam splitter, and is then imaged at the CCD
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camera. The CCD camera has 1024 × 1280 pixels with the size of each pixel being 5 µm,

the distance d between the scatterer and the object is 4 cm, the imaging lens of focal

length f = 10 cm images the object with a magnification of about 3. As earlier, in order to

mimic the object at different transverse planes, we keep our source at various longitudinal

distances from the object. Figure 5.3(f) shows the image of the object in the absence of

any scattering. We use the same object as in the transmitting configuration. However,

since it is a binary object with only transparent and opaque regions, the image of the

object in 5.3(f) has reversed bright and dark regions as compared to the image in 5.2(b).

Figure 5.3(g) shows the images of the object obtained with the three sources at three

different z values and with two different scattering strengths. We calculate the contrast

of each image shown in 5.3(g) and plot it in 5.3(h). We find that in general, the results

of Figs. 5.3(g-h) obtained in the reflecting configuration are qualitatively similar to those

obtained in the transmitting imaging configuration. However, the contrast of the images

in the reflecting configuration is lower than that in the transmitting configuration. This

is simply because the light has to go through the scatterer medium twice in the reflecting

configuration.
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FIGURE 5.4: The image and image contrast obtained with the PIC source and those with the

conventional source at varying intensities. All the images were obtained at z = 30 cm and with

the scattering strength α = 4.5.
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In both the reflecting and transmitting imaging configurations, we find that, as z in-

creases for a given scattering strength, the image contrast and the illumination intensity of

the images obtained with the conventional source decreases. So, a question that can arise

is whether the decrease in the image contrast with increasing z is due to the increase in the

spatial coherence length of the source or due to the decrease in the illumination intensity.

We address this question in the transmitting configuration at z = 30 cm and α = 4.5. We

record images at increased intensities of the conventional source and compare them with

the image obtained with the PIC source under same experimental conditions. Figure 5.4

shows one image obtained with the PIC source and the three images obtained with the

conventional source at various illumination intensities. Along with the images, Fig. 5.4

also shows the corresponding image contrasts. The image obtained with the PIC source

has an image contrast equal to 35%. The other three images of Fig. 5.4 are obtained with

the conventional source at various intensities. The first of these images is obtained under

the same experimental conditions as those in the PIC source case, with an ND filter of OD

equal to 1. The illumination intensity in this case is about three times lower compared

to that in the case of the PIC source. The second image is obtained with an ND filter of

OD equal to 0.5 such that the illumination intensity is very close to that in the case of

the PIC source. The third image is obtained with no ND filter such that the illumination

intensity is increased by a factor of more than three compared to that in the case of the

PIC source. We find that the image contrast with the conventional source is less than 15%,

compared to the 35% contrast obtained with the PIC source under the same experimental

conditions. When the intensity of the conventional source is increased such that the illu-

mination becomes comparable to that of the PIC source, the image contrast increases to

only 15.6%. A subsequent increase in the intensity does not improve the image contrast

much further. This confirms that the decrease in the image contrast with the conventional

source is indeed due to the increase in the spatial coherence length of the source and that

it cannot be compensated by simply increasing the illumination intensity. Furthermore,

we note that the incremental increase in the contrast as a function of the illumination

intensity is due to the increased signal-to-noise ratio and that it saturates very quickly.
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5.2.6 Imaging with Minimum-Possible Coherence (MPC) source
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FIGURE 5.5: (a) Schematic of the setup for imaging in transmitting configuration with an MPC

source. (b) Image of the object in the absence of scattering. (c) Images of the object and (d) Imaging

contrast obtained with MPC and PIC sources at different z and α values.

Figure 5.5 (a) shows the schematic experimental setup for imaging with an MPC

source. We image the object kept at three different values of z, namely, z = 25 cm, z = 30

cm and z = 35 cm. For each z, we choose u such that the primary incoherent source

gets imaged onto a plane at z and the field achieves its σc,min at z. The rest of our experi-

mental setup is the same as that in the case of the transmission configuration of Fig.5.3(a).

Next, in order to demonstrate enhanced imaging capabilities of our MPC source, we com-

pare its performance with that of at PIC source under the same experimental conditions.

Figure 5.5(b) shows the image of the object in the absence of any scattering. Figure 5.5(c)

shows images obtained with the two sources for three different values of z and two differ-

ent values of α . Figure 5.5(d) shows the imaging contrast as a function of z and α. These

results demonstrate that the MPC source images different transverse planes with max-

imum possible imaging contrast. Furthermore, in the presence of a scattering medium,

the MPC source provides much better imaging contrast compared not only to the conven-

tional or coherent sources but also to the PIC source. Nevertheless, for smaller scattering

strengths, a PIC source would still be preferable over an MPC source, since as opposed

to the MPC source, which requires choosing a suitable u for every z, a PIC source works

with the same configuration at every z.
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5.3 Robustness of structured spatially partially coherent fields

in turbulence

5.3.1 Theory: propagation and detection of structured spatially partially co-

herent fields through turbulence

Figure 5.6 illustrates how our structured partially coherent field propagates through a

planar simulated turbulence and gets detected. We use the technique described in chap-

ter 2 for generating spatially partially coherent fields with structures in their cross-spectral

density functions. A planar, monochromatic, spatially completely incoherent primary

source is kept at the back focal plane z = −F of a lens located at z = 0. The central

wavelength of the source is λ0 = 2π/k0, where k0 is the magnitude of the wavevec-

tor. The combination of the primary incoherent source along with the lens constitutes

our structured spatially partially coherent source. The structured partially coherent field

propagates through a planar simulated turbulence kept at z = z′ and then gets observed

by the detection system consisting of a converging lens of focal length f kept at z = zd

and a camera kept at z = z f = zd + f . The detection system essentially measures the

cross-spectral density function of the field at z = zd. We represent the transverse posi-

tion coordinates at z = −F, z = z′, z = zd, and z = z f by ρ′′ ≡ (x′′, y′′), ρ′ ≡ (x′, y′),

z=-F

z=z z=zz=0

x

y

x

y

x

y

x

y

Structured partially 

  coherent source

L L

1

f

f

f

11

z=z

   

Camera

d f
fSLM/turbulence

FIGURE 5.6: Schematic of the experimental setup illustrating propagation of our structured par-

tially coherent source through a turbulent medium. (b) Simulated intensity of the primary source.

(c) Simulated cross-spectral density Ws(∆ρ; z = zd) of the source at z = zd
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ρ ≡ (x, y), and ρ f ≡ (x f , y f ), respectively. The intensity of the primary source at z = −F

is given by I(ρ′′, z = −F). Therefore, the cross-spectral density function Ws(ρ′1, ρ′2; z = z′)

of our partially coherent field at z = z′ can be shown to be [128, 231]

Ws(ρ
′
1,ρ′

2; z = z′) → Ws(∆ρ′; z = z′) = A
F2

¨

I(ρ′′; z = −F)e−i
k0
F ρ′′·∆ρ′

dρ′′, (5.10)

where ∆ρ′ = |ρ′

2
− ρ′

1
|. We note that the cross-spectral density function Ws(ρ′

1,ρ′
2; z = z′)

of our source depends on the transverse coordinates only through their difference ∆ρ′ .

Therefore, we write it as Ws(∆ρ′; z = z′). Such sources are referred to as statistical homo-

geneous source [2] or even spatially stationary source [128]. The cross-spectral density

W(ρ′

1
,ρ′

2
; z = z′) at z = z′ right after the turbulence plane is given by W(ρ′

1
,ρ′

2
; z = z′) =

Ws(∆ρ′; z = z′)Wt(ρ′

1
,ρ′

2
), where Wt(ρ′

1
,ρ′

2
) is the cross-spectral density induced due to

the turbulence. According to the Kolmogorov model,

Wt(ρ
′

1
,ρ′

2
) = e

−3.44(
∆ρ′
r0

)
5
3

. (5.11)

The quantity r0 is called Fried’s coherence diameter [234], and it quantifies the strength

of turbulence. The value of r0 ranges from 0 to ∞, with limit r0 → 0 implying infinite

turbulence strength and limit r0 → ∞ implying no turbulence. In order to show the

structural robustness of our partially coherent field in turbulence, we obtain the cross-

spectral density function of the field after it has propagated up to z = zd. Using Eqs. (5.10)

and (5.11) and the propagation Eq. (1.21) (section 1.3 of chapter 1), we find the cross

spectral density function W(ρ1,ρ2; z = zd) → W(∆ρ; z = zd) of the field at z = zd to be

W(∆ρ; z = zd) = e
−3.44(

∆ρ
r0

)
5
3
Ws(∆ρ; z = zd), (5.12)

where

Ws(∆ρ; z = zd) =
A

F2

¨

I(ρ′′; z = −F)e−i
k0
F ρ′′·∆ρdρ′′ (5.13)
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is the cross-spectral density function of the field at z = zd in the absence of turbulence,

and ∆ρ = |ρ2 − ρ1|. We note that the cross-spectral density functions W(∆ρ; z = zd)

and Ws(∆ρ; z = zd) depend on the transverse position coordinates only through their

difference ∆ρ and thus that the field at z = zd remains spatially-stationary with or without

the turbulence. Furthermore, we note that Ws(∆ρ; z = zd) remains propagation-invariant

[128] and therefore it has the same functional form as that of the cross-spectral density

function Ws(∆ρ; z = z′) at z = z′, as given in Eq. (5.10).

We note that since W(∆ρ; z = zd) is spatially stationary, it can be expressed in terms of

the intensity I(ρ f ; z = z f ) at z = z f . In order to show this we first write the cross-spectral

density Wl(ρ1,ρ2; zd) at z = zd right after the lens L f as Wl(ρ1,ρ2; z = zd) = W(∆ρ; z =

zd)T
∗(ρ1)T(ρ2), where T(ρ) = e

i
k0
2 f ρ2

is the transmission function of lens L f [235]. Next,

using the propagation Eq. (1.21), we propagate the field from z = zd to z = z f and find

the intensity I(ρf ; z = z f ) at z = z f plane to be

I(ρf ; z = z f ) =W(ρf ,ρf ; z = z f ) =

¨

W(∆ρ; z = zd)e
i
k0
f ρf ·∆ρ

d∆ρ. (5.14)

We Fourier-invert the above equation and write it as

W(∆ρ; z = zd) =

¨

I(ρf ; z = z f )e
−i

k0
f ρf ·∆ρ

dρf . (5.15)

Thus we see that by measuring the intensity I(ρ f ; z = z f ) at the focal plane z = z f , one

obtains the cross-spectral density function W(∆ρ, z = zd) at z = zd.

5.3.2 Experimental Setup

We next present our experimental demonstration of structural robustness of spatially par-

tially coherent fields in the presence of turbulent media. Figure 5.6 shows the schematic

of the experimental setup, where the structured partially coherent source is kept at z = 0.

We use an SLM for simulating planar turbulence at z = z′ [236] and an electron mul-
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tiplied charged coupled device (EMCCD) camera for measuring the intensity at z = z f

plane. From Eq. (5.13), we have that the cross-spectral density function Ws(∆ρ; z = zd) at

(a) (b)

¾c

¢x  

¢
y

 

x 

y
 

a

FIGURE 5.7: (a) Simulated intensity of the primary source. (b) Simulated cross-spectral density

Ws(∆ρ; z = zd) of the source at z = zd

z = zd is the Fourier transform of the intensity I(ρ′′; z = −F) of the primary incoherent

source. Therefore, in order to generate spatially partially coherent field with structured

cross-spectral density function, we use a light emitting diode (LED) array as our primary

source. The array consists of 9 LEDs arranged in a 3 × 3 grid. The size of the individ-

ual LED is a = 0.58 mm. Figure 5.7(a) shows the simulated intensity I(ρ′′; z = −F)

of our primary incoherent source at z = −F while Fig. 5.7(b) shows the correspond-

ing cross spectral density function Ws(∆ρ; z = zd) at z = zd. As the Fig. 5.7(a) shows

that I(ρ′′; z = −F) is a symmetric function, so we expect that the cross spectral density

function Ws(∆ρ; z = zd) of is a real function. We note that the oscillatory features of the

cross-spectral density function in Fig. 5.7(b) decays over a length scale σc in the transverse

direction. Using Eq. (5.13), it can be shown that σc is decided by the transverse size a of

the individual LEDs at z = −F and that it can be written as σc = λ0F/a (see Ref. [2],

section 4.4.4). We take σc as the spatial coherence length of the field. This definition of the

spatial coherence length is consistent with the definition of temporal coherence length

for a multi-mode continuous wave (CW) laser with structured temporal cross-spectral

density function [237]. By using lenses of focal lengths F = 30 cm, 50 cm, and 75 cm in

the source configuration, we generate structured spatially partially coherent fields with

σc = 0.33 mm, 0.55 mm, and 0.82 mm, respectively. In order to simulate turbulence using

an SLM kept at z = z′, we display around 200 random phase patterns on the SLM with

Kolmogorov statistics in a sequential manner at a frame rate of 30 Hz. We set an exposure
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FIGURE 5.8: Experimentally measured I(ρf ; z = z f ) with different transverse spatial coherence

lengths at various turbulence strengths.

time of 7 seconds such that the EMCCD camera records the entire ensemble of fields cor-

responding to the 200 phase patterns. In this way, we generate Kolmogorov turbulence.

We perform experiments at three different turbulence strengths r0 → ∞, r0 = 0.48 mm,

and r0 = 0.34 mm. In our experiments, we use f = 30 cm, z′ = 20 cm, zd = 50 cm, and

z f = zd + f = 80 cm.

5.3.3 Transverse intensity measurements

Figure 5.8 shows the experimentally measured intensity I(ρf ; z = z f ) at z = z f for differ-

ent spatial coherence lengths σc at various turbulence strengths r0. With no turbulence,

that is, at r0 → ∞, the intensity I(ρ f ; z = z f ) at different σc is the same as the inten-

sity I(ρ′′; z = −F) of the primary source shown in Fig. 5.7(a), apart from a change in

scale. In the presence of turbulence, we find that as the spatial coherence length σc of the

field decreases from 0.82 mm to 0.33 mm, the degradation in the structural features of

the intensity I(ρ f ; z = z f ) reduces. The small tilt in the measured intensity of Fig. 5.8 is
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attributed to the imperfections in the alignment of the experimental setup.
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FIGURE 5.9: (a) Reconstructed cross-spectral density function W(∆ρ; z = zd) for different trans-

verse spatial coherence lengths at various turbulence strengths. (b) The plots of one-dimensional

cuts along the x−direction of W(∆ρ; z = zd) at r0 → ∞ and r0 = 0.34 mm for different σc.

5.3.4 Reconstruction of cross-spectral density function and its structural ro-

bustness

Next, using Eq. (5.15), we reconstruct the cross-spectral density function W(∆ρ; z = zd)

at z = zd from the above measured intensity I(ρf ; z = z f ). Figure 5.9(a) shows the recon-

structed cross-spectral density function W(∆ρ; z = zd) at z = zd for different σc at various

r0. We see that in the absence of turbulence, that is at r0 → ∞, the two-dimensional
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structure profile of W(∆ρ; z = zd) is same for all three σc values, apart from a change in

scale. In the presence of turbulence, we find that the two-dimensional structures suffer

degradation for all three σc values. However, at a given turbulence strength, the struc-

tural degradation becomes less as the spatial coherence length is decreased. We note

that in Fig. 5.9(b), we have plotted W(∆ρ; z = zd) over different range of ∆ρ = (∆x, ∆y)

at different σc. This is so that we can better compare the structural degradation at dif-

ferent σc values. Finally, in order to highlight the main claim of this chapter, which is

that the structural robustness increases as σc is decreased, we plot in Fig. 5.9(b) the one-

dimensional cross-spectral density function W(∆x; z = zd) by taking one-dimensional

cuts of W(∆ρ; z = zd) plots in Fig. 5.9(a). For each σc, we plot W(∆x; z = zd) at r0 → ∞,

and r0 = 0.34 together. These plots clearly show that the structural robustness of the

cross-spectral density function of a spatially partially coherent field increases as we de-

crease the spatial coherence length of the field.

In order to demonstrate the structural robustness cross-spectral density function, one

can also use the wavefront inversion-based interferometric technique described in chap-

ter 3. In this chapter, we use a different technique that reconstructs W(∆ρ; z = zd) just

by recording intensity I(ρ f ; z = z f ) instead of using the technique in chapter 3 because

the reconstruction algorithm provides more experimental ease than that of the method in

chapter 3. Although the presented reconstruction algorithm is only suitable for demon-

strating the structural robustness for our experimental situation, for a general experimen-

tal situation, one requires the technique in chapter 3 for demonstrating the same.

5.3.5 Implication in free-space communication

The above results ensure that a structured field with partial spatial coherence is more ro-

bust than that with complete spatial coherence in the presence of turbulence. By utilizing

this fact, one can propose a free-space communication protocol analogous to the proto-

cols in Ref. [190, 191]. The proposed protocol encodes information in different structures

in cross-spectral density functions of spatially partially coherent fields, and the structural
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robustness of cross-spectral density functions can make this protocol more insensitive to

turbulence than that of the existing protocols based on structured spatially completely

coherent fields [190, 191]. A recent article [238] has already adopted a similar free-space

communication protocol based on structured spatially partially coherent fields.

5.4 Summary

In summary, we have demonstrated the advantages of spatial coherence engineering in

the context of imaging and optical communication. We have begun with the demonstra-

tion of enhanced imaging of different transverse planes along the propagation direction

through scattering media by controlling the propagation of spatial coherence of the illu-

minating field. Using a PIC source, we have demonstrated imaging spatially separated

transverse planes without losing contrast. Next, by making a source that has minimum-

possible coherence (MPC), we have shown improved imaging with maximum possible

contrast. We note that in our experiments, we have used scattering media of thickness

ranging from 1 mm to 6 mm. In addition, in the reflecting configuration, we have es-

sentially imaged an object kept between a set of two scattering media, which to some

extent mimics the experimental situation in which an object is kept in a distributed scat-

terer. Therefore, our results suggest that controlling the propagation of spatial coherence

would offer similar qualitative imaging benefits even in the presence of a distributed

scatterer.

We have then demonstrated the structural robustness of spatially partially coherent

fields in turbulence to address the issue involved in free-space optical communication

with structured light. We have shown that at a given turbulence strength, the structural

robustness of a partially coherent field increases with the decrease in the spatial coher-

ence length of the field. We note that in the experiments, we have worked with simulated

planar turbulence of strength r0 ranging from ∞ to 0.34 mm. On the other hand, the real

atmospheric turbulence is distributed and can even cause amplitude fluctuations in ad-

dition to random phase fluctuations. The typical values of r0 for atmospheric turbulence
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range from 4 mm to 30 mm [190, 191, 213]. So, although there are some basic differences

between the real atmospheric turbulence and the planar turbulence used in our experi-

ments, we expect that our results on structural robustness remain qualitatively valid even

for the real atmospheric turbulence.



Chapter 6

Revival of spatial entanglement in

two-photon field

6.1 Introduction

Quantum Entanglement [33–35,239] is the key resource behind the advancement of many

applications such as quantum imaging [240], quantum communication [241], quantum

information processing [242], and quantum computing [243]. Spontaneous parametric

down-conversion (SPDC) is one of the most widely used methods for generating en-

tangled two-photon fields. The entanglement in down-converted two-photon field has

been extensively studied in the discrete finite-dimensional bases such as polarization [38],

time-bin [244, 245], and orbital angular momentum (OAM) [246, 247] as well as in the

continuous-variable bases such as position-momentum [39, 56, 82], angle-OAM [40], ra-

dial position-radial momentum [88], time-energy [89,172,248]. The feasibility of utilizing

entanglement in the finite-dimensional bases for long-distance quantum-information ap-

plications has been demonstrated in several experimental works [249–253]. However,

the suitability of entanglement in the continuous-variable bases for long-distance appli-

cations has not been established so far. Among the continuous-variable bases, position-
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momentum bases have been extensively investigated for its applicability in several appli-

cations such as quantum imaging [42–46], quantum holography [47,48], quantum metrol-

ogy [50], and quantum secure communication [51, 54]. Although position-momentum

entanglement has found uses in many of these applications, it has not been found suit-

able for applications involving long-distance propagation. This is because as the pho-

tons propagate away from the down-conversion crystal, the entanglement in position-

momentum decays very rapidly [57, 58] and this effect becomes worse in the presence of

turbulent environments.

In this chapter, we explore propagation of entanglement in the angle-OAM bases and

demonstrate that the entanglement of down-converted photons in the angle-OAM bases

exhibits a remarkably different behaviour than in the position-momentum bases. Just as

in the case of position-momentum bases, initially, the entanglement in angle-OAM bases

decays with propagation, but as the photons continue to travel further from the source,

the entanglement gets revived. We refer to this behaviour as the propagation-induced en-

tanglement revival. We theoretically and experimentally demonstrate this behaviour and

show that the propagation-induced entanglement revival takes place even in the presence

of strong turbulence. This feature of angle-OAM entanglement can therefore have im-

portant implications for long-distance quantum information applications. Figures 6.1(a)

and 6.1(b) illustrate how entanglement in the position-momentum and angle-OAM bases

propagate as a function of the propagation distance z based on the propagation dynam-

ics of EPR correlation. The entanglement in the position-momentum bases gets lost after

the photons propagate a short distance away from the crystal, and once lost, the entan-

glement does not revive upon further propagation. On the other hand, the angle-OAM

entanglement also gets lost just like position-momentum as the photons start to propa-

gate away from the crystal; however, a further propagation by some distance revives the

entanglement. Once revived, the entanglement remains intact upto an arbitrary propa-

gation distance.

The chapter has been adopted veritably from Ref. [254], and the contents are orga-

nized in the following manner. In section 6.2, we present the theory of entanglement
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FIGURE 6.1: (a) and (b) illustrate how entanglement in the position-momentum and angle-OAM

bases change as the two photons propagate away from the down-conversion crystal. The plots

present a qualitative depiction of how entanglement in the position-momentum and the angle-

OAM bases changes as a function of the propagation distance z.

propagation in position-momentum and angle-OAM bases, and verify entanglement re-

vival in angle-OAM bases. In section 6.3, we experimentally demonstrate the revival of

angle-OAM entanglement by measuring EPR correlation upto a propagation distance of

60 cm. Section 6.4 demonstrates the entanglement revival behaviour in the presence of

turbulence. Section 6.5 summarizes the chapter.

6.2 Theory

6.2.1 Propagation of position and angle conditional uncertainties

Figures 6.2(a) and (b) illustrate the concept of conditional position and angle uncertain-

ties respectively, in SPDC collinear type-I process. Figures 6.2(a) shows that a pump beam

gets down-converted into co-propagating signal-idler photon field and at a given trans-

verse plane signal and idler fields are on the top of each other, ws represents the position

uncertainty of the individual signal or idler photon fields. If the idler photon gets de-

tected at yi then the corresponding signal photon certainty gets detected in the shaded

region and its width is referred as the conditional position uncertainty of the signal pho-

ton ∆(ys|yi). Similarly, Fig. 6.2(b) depicts that if the idler photon gets detected at the

angular location θi then the signal photon gets detected in the shaded angular region and
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its width is referred as the conditional angle uncertainty of the signal photon ∆(θs|θi). We

next present an quantitative analysis of the propagation of conditional position and angle

uncertainties of the signal photon in SPDC.

For a Gaussian pump with beam waist at the crystal plane z = 0, the two-photon

wavefunction in the position basis at the crystal plane z = 0 is given by [56–58]:

ψ(ρ′′
s ,ρ′′

i ; 0) = A exp

[

− (ρ′′
s + ρ′′

i )
2

4w2
0

]

exp

[

−|ρ′′
s − ρ′′

i |2
4σ2

0

]

, (6.1)

where ρ′′
s ≡ (x′′s , y′′s ) and ρ′′

i ≡ (x′′i , y′′i ) are the transverse positions of the signal and

idler photons, respectively at z = 0, and k = π/λp. Also, w0 is the pump beam waist

at z = 0, σ0 =
√

0.455Lλp/2π, L is the length of the crystal, and λp is the wavelength

of the pump field. Using the two-photon wave-function ψ(ρ′′
s ,ρ′′

i ; 0) at z = 0, we cal-

culate the two-photon wave-function at ψ(ρs,ρi; z) (see appendix B for derivation) at

z and thereby the two-photon position probability distribution function P(ρs,ρi; z) =

ψ(ρs,ρi; z)∗ψ(ρs,ρi; z) at z, which can be shown to be

P(ρs,ρi; z) = |A′|2 exp

[

− (ρs + ρi)
2

2w(z)2

]

exp

[

−|ρs − ρi|2
2σ(z)2

]

, (6.2)

where w(z) = w0

√

1 + z2/(k2w4
0) and σ(z) = σ0

√

1 + z2/(k2σ4
0 ).

We now obtain the two-photon angle probability distribution by first writing P(ρs,ρi; z)

of Eq. (6.2) in the polar coordinates using the transformations ρs = (rs cos θs, rs sin θs) and

ρi = (ri cos θi, ri sin θi), where (rs, θs) and (ri, θi) are the polar coordinates of the signal

and idler photons at z, etc. We therefore get:

|ρs + ρi|2 = r2
s + r2

i + 2rsri cos(θs − θi)

|ρs − ρi|2 = r2
s + r2

i − 2rsri cos(θs − θi)

P(rs, θs, ri, θi; z) = |A|2 exp

[

− r2
s + r2

i + 2rsri cos(θs − θi)

2w(z)2

]

× exp

[

− r2
s + r2

i − 2rsri cos(θs − θi)

2σ(z)2

]

(6.3)
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FIGURE 6.2: (a) and (b) illustrate the concept of conditional position and angle uncertainty re-

spectively.(c) and (d) show the two-photon position probability distribution function P(ys, yi; z)

and the angle probability distribution function P(θs, θi; z) respectively at various z values. (e) and

(f) show the conditional position probability distribution function P(ys|yi; z) and the conditional

angle probability distribution function P(θs|θi; z) of the signal photon at various z values. (g) Nu-

merically calculated conditional position uncertainty ∆(ys|yi; z) as a function of z. The two dotted

lines show the z-scaling of the uncertainty in the near- and far-field regions. (h) Numerically cal-

culated conditional angle uncertainty ∆(θs|θi; z) as a function of z. The two dotted lines show the

z-scaling of the uncertainty in the near- and far-field regions.
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We then integrate P(rs, θs, ri, θi; z) over the radial coordinates in order to obtain the two-

photon angle probability distribution function P(θs, θi; z) as:

P(θs, θi; z) =

¨

rsriP(rs, θs, ri, θi; z)drsdri, (6.4)

Now, using the relevant experimental parameters w0 = 507 µm, L = 5 mm, and λp = 355

nm in Eqs. (6.2), and (6.4), we calculate the two-photon position probability distribution

P(ys, yi; z) and the two-photon angle probability distribution P(θs, θi; z) at different prop-

agation distances z as shown in Figs. 6.2(c) and 6.2(e) respectively. In plottting P(ys, yi; z)

and P(θs, θi; z) in Figs. 6.2(c) and 6.2(e), we scale them in order to make their maximum

value equals to one. We next calculate the corresponding conditional position probability

distribution function P(ys|yi; z) and the angle probability distribution function P(θs|θi; z)

by fixing yi = 0 in P(ys, yi; z) and θi = 0 in P(θs, θi; z) respectively. Figures 6.2(d) and

6.2(f) show P(ys|yi; z) and P(θs|θi; z) respectively. Figures 6.2(c) and 6.2(d) show that in

the near-field region the two down-converted photons have the maximum probability of

arriving at the same transverse position. This is referred to as the position-correlation in

the near-field region [39]. As the photon pair propagates away from the crystal plane,

they become anti-correlated in position. Figures 6.2(e) and 6.2(f) show how the corre-

lations in the angle basis change as a function of z. We find that in the near field, the

signal and idler photons have the maximum probability of arriving at the same angular

positions. However, in the far field, the two photons are most likely to arrive at antipodal

location, that is, at an angle difference of π radians. The standard deviations of P(ys|yi; z),

and P(θs|θi; z) are referred to as the conditional position uncertainty ∆(ys |yi; z) and the

conditional angle uncertainty ∆(θs|θi; z), respectively. Figures 6.2(g) and 6.2(h) show the

plot of the numerically calculated ∆(ys|yi; z) and ∆(θs|θi; z) respectively, as a function of

z. we find that as the down-converted photons propagate away from the crystal, the con-

ditional position uncertainty increases monotonically. However, the conditional angle

uncertainty increases initially but later begins to decrease monotonically.

Although it is very difficult to derive the general analytical expressions for the condi-

tional position and angle uncertainties as a function of z, we derive expressions for how
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FIGURE 6.3: (a) Illustrates that if a idler photon gets detected at a point depicted by any one of the

dots, the corrsponding signal photon certainty gets detected within the diameterically opposite

dashed circle. Similarly, if a idler photon gets detected at a angular position depicted by the line,

the corrsponding signal photon certainty gets detected in the shaded area. The angular width of

that shaded area scales with the angular sector ∆θs ∼ ∆(ys|yi)/ws. (b) Illustrates the propagation

of signal-idler field in the near-fields and depicts the increasing trend of ∆θs(z). (c) Illustrates the

propagation of signal-idler field in the far-field and depicts the decreasing trend of ∆θs(z).

the conditional uncertainties scale with z in the near- and far-field regions. The two dot-

ted lines in Figs. 6.2(g) show how the conditional position uncertainty ∆(ys|yi; z) scales

with z in the near and far fields. We find that ∆(ys|yi; z) increases monotonically as a func-

tion of z in both the near- and far-field regions. While the uncertainty increases as σ(z)

in the near-field, it increases as w(z) in the far-field. The two dotted lines in Figs. 6.2(h)

show how the conditional angle uncertainty ∆(θs|θi; z) scales with z in the near and far

field. We find that while ∆(θs|θi; z) increases as z in the near field regions, it decreases as

1/z in the far-field regions. (For detailed theoretical calculation see Appendix C).

We now present an illustration in Fig. 6.3 to intuitively explain the propagation of
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∆(θs|θi; z)in the near- and far-field. Figure 6.3(a) illustrates that if the idler photon gets

detected at the angular position θi depicted by the solid line, the corresponding signal

photon gets detected in the shaded region. The conditional angle uncertainty ∆(θs|θi) of

the signal photon is obtained by radially integrating the shaded region, which scales with

the angular sector ∆θs. It is given by ∆θs ∼ ∆(ys|yi)/ws. The propagation of ∆(ys|yi)

and ws decides how ∆θs changes with z. Figures 6.2(e) and B.2 in Appendix B show

∆(ys|yi; z) and ws(z) respectively, as a function of z. Based on these two plots, we find

that ∆(ys|yi; z) increases faster than ws(z) in the near-field and ws(z) increases faster than

∆(ys|yi; z) in the far-field. Figure 6.3(b) illustrates the propagation of collinear signal-

idler photon field in the near-field, where idler and signal photons are detected in the

same region illustrated by a solid line and a shaded area respectively. The spatial extent

of the signal photon (shaded area) increases much faster than that of the signal or idler

field. As a result, the angular sector ∆θs(z2) at z = z2 becomes significantly larger than

the angular sector ∆θs(z1) at z = z1. This explains the increasing trend of ∆(θs|θi; z) in the

near-field. Figure 6.3(c) illustrates the propagation of the signal-idler photon in the far-

field. If the idler gets detected at an angular position depicted by the solid line, the signal

gets detected in the shaded region and the spatial extent of the signal photon (shaded

area) changes much slower than that of the signal or idler photon field as a function of

the propagation distance. As a result, the angular secotor ∆θs(z3) at z = z3 becomes

smaller than the angular sector ∆θs(z4) at z = z4, which also explains the decreasing

trend of ∆(θs|θi; z) in the far-field.

6.2.2 Propagation of two-photon momentum and OAM probability distribu-

tions

Using the two-photon wave-function in the position basis ψ(ρs,ρi; z) calculated in the

previous section, we calculate the two-photon wave-function ψ(ps,pi; z) in the transverse
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momentum basis, which is given by [57]

ψ(ps,pi; z) = B exp

[

− (ps + pi)
2w2

0

4h̄2

]

exp

[

−|ps − pi|2σ2
0

4h̄2

]

exp

[

− iz

kh̄2
(p2

s + p2
i )

]

, (6.5)

where ps ≡ (psx, psy) and pi ≡ (pix, piy) are the transverse momenta of the signal and

idler photons, respectively. Now by fixing pi = 0 in the above equation we find the

conditional momentum probability distribution function P(ps|pi; z) of the signal photon

is given by

P(ps|pi; z) = A exp

[

−p2
s (w

2
0 + σ2

0 )

2h̄2

]

. (6.6)

The standard deviation of P(ps|pi; z) along the y-direction ∆(psy|piy; z) is the conditional

momentum uncertainty of the signal photon. The above equation shows that P(ps|pi; z)

is independent of z and that ∆(psy|piy; z) does not change upon propagation. For the ex-

perimental parameter as given above, the calculated value of ∆(psy|piy; z) is 1.97h̄ mm−1.

For a Gaussian pump, the two-photon state produced by SPDC in the OAM basis can

be written as [40, 155]

|Ψ〉 =
∞

∑
ls=−∞

√

Sls
|ls〉s| − ls〉i, (6.7)

where lsh̄ and −lsh̄ are the OAMs of signal and idler photons, respectively. The form of

the two-photon state above implies that if the signal photon is detected with OAM lsh̄,

then the idler photon is guaranteed to be detected with OAM −lsh̄. For the above equa-

tion, the conditional two-photon OAM probability distribution function takes the fol-

lowing form: P(ls|li; z) = Sls
δls,0. This implies that the corresponding conditional OAM

uncertainty ∆(ls|li; z) is equal to zero. However, in an experimental situation, one always

measures ∆(ls|li; z) to be non-zero [40]. There are several reasons for this, which includes

the pump not being an ideal Gaussian beam, the experimental imperfections such as mis-

alignment and background noise, and the mode dependent detection efficiencies of OAM

detectors. These cause an additional contribution in P(ls|li; z) measurement. Therefore,
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in our experiments, we model the conditional OAM probability distribution function as:

P(ls|li; z) = Sls
δls,0 + N exp

[

− l2
s

2σ2
f

]

, (6.8)

where S0, σf and N are the fitting parameters. We take the width of P(ls|li; z) as the

conditional OAM uncertainty ∆(ls|li; z). We fit the above P(ls|li; z) with the experimental

OAM conditional distribution in Fig. 6.8 and find its width ∆(ls|li; z) to be 0.72h̄ radian−1.

6.2.3 Propagation of position-momentum and angle-OAM entanglement

We now use EPR correlation for certifying entanglement, and if the product ∆(ys|yi; z)

∆(psy|piy.z) < 0.5h̄, the two photons are said to be entangled in the position-momentum

bases at z [33, 39]. Similarly, we write the EPR correlation for entanglement in the angle-

OAM bases as: ∆(θs|θi; z)∆(ls|li; z) < 0.5h̄[1 − 2πP(θs|θi = θ0; z)]. We find that the prob-

ability P(θs|θi = θ0; z) does not remain constant with propagation distance z. As a result,

the Heiseberg uncertainty bound changes with propagation distance z and it is shown in

Fig. 6.9(b). We note that the conditional momentum and OAM uncertainties ∆(psy|piy; z)

and ∆(ls|li; z) remain constant as a function of z. As a result, the functional dependence

of ∆(ys|yi; z)∆(psy|yiy; z) and ∆(θs|θi; z)∆(ls|li; z) on z is same as that of ∆(ys|yi; z) and

∆(θs|θi; z), respectively. This implies that both position-momentum and angle-OAM en-

tanglements are lost within a short propagation distance from the down-conversion crys-

tal; however, the angle-OAM entanglement only revives through further propagation.

We plot the theoretically calculated uncertainty products in Figs. 6.9, and compare them

with the experimental data.
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6.3 Experimental demonstration

6.3.1 Measurement of two-photon position and angle probability distribution

functions

Figures 6.4 shows the schematic of the experimental setup for measuring the two-photon

probability distribution functions P(ys, yi; z), and P(θs, θi; z) through coincidence mea-

surements of the two photons. An ultraviolet (UV) continuous wave (CW) Gaussian

pump (Coherent Genesis STM UV laser) of wavelength λp = 355 nm, beam waist w0 =

507 µm is incident on a 5 mm × 5 mm × 5 mm β-barium borate (BBO) crystal. The crystal

is cut in a manner that it produces signal and idler photons with collinear type-I phase-

matching condition. A long-pass filter (LPF) is placed after the crystal to block the UV

pump. We use an EMCCD camera having 512 × 512 pixel grid with 16 × 16 µm2 pixel-

size for measuring P(ys, yi; z) and P(θs, θi; z). For this, we record 106-107 images of the

SPDC field with an average flux of 0.5 - 2.0 photons per pixel. Appendix B describes how

to measure coincidence counts using an EMCD camera. A 10 nm bandpass filter centered

at 710 nm is used in order to detect the down-converted photons. The blower heater

(BH) produces turbulence by blowing hot air, and it is switched on during our experi-

ments involving turbulence. In order to measure P(ys, yi; z) and P(θs, θi; z) as a function

of propagation distance z, we image different z planes onto the EMCCD camera plane

using 4 f imaging systems. For imaging the transverse planes between z = 0.35 cm and

z = 1.5 cm, we keep the magnification of the imaging system to be 1 while for imaging the

transverse planes between z = 10 and z = 60 cm, we keep the magnification to be 0.25.

For measuring the two-photon position probability distribution function P(ys, yi; z), we

take millions of images using the EMCCD camera. For each image, we group the pixels

into horizontal strips, ys and yi, as shown in Fig. 6.5(a). The coincidence count between

ys and yi can be written as (see appendix C Eq. (D.3))

Cysyi
=

1

N

N

∑
k=1

n
(k)
ys n

(k)
yi

− 1

N

N

∑
k=1

n
(k)
ys n

(k+1)
yi

, (6.9)
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FIGURE 6.4: Schematic of the experimental setup for measuring position and angle coincidences.

LPF: long pass filter.

where n
(k)
ys

and n
(k)
yi

are the photon counts of ys and yi respectively. The top image in

Fig. 6.5(b) represents total coincidence as a function of ys and yi, and it is evaluated

by using the first term of Eq. (6.9). The bottom image in Fig. 6.5(b) represents the ac-

cidental coincidence as a function of ys and yi, and it is evaluated using the second term

of Eq. (6.9). The difference of these two images is proportional to the true coincidence

Cysyi
and thus to the two-photon position probability distribution function P(ys, yi; z), as

shown in Fig. 6.5(c). At ys = yi, the correlation becomes artificially perfect because we

correlate a pixel with itself. We manually discard the value of P(ys, yi; z) at all ys = yi

pixels by substituting it with a constant value and we exclude all ys = yi pixels while

extracting ∆(ys|yi; z) from the measured P(ys, yi; z).

For measuring the two-photon angle probability distribution P(θs, θi; z), we group the

pixels for each image into angular sectors as shown in Fig. 6.5(d). The coincidence count

between the angular sectors at θs and θi is given by (see appendix C Eq. (D.3))

Cθsθi
=

1

N

N

∑
k=1

n
(k)
θs

n
(k)
θi

− 1

N

N

∑
k=1

n
(k)
θs

n
(k+1)
θi

, (6.10)

where n
(k)
θs

and n
(k)
θi

are the photon counts of angular sectors θs and θi respectively. The

top image in Fig. 6.5(e) represents the total coincidence as a function of θs and θi, and it

is evaluated using the first term of Eq. (6.10). The bottom image in Fig. 6.5(e) represents

the accidental coincidence as a function of θs and θi, and it evaluated using the second
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FIGURE 6.5: (a) Acquired images of SPDC field and binning the pixels into signal ys and idler

yi bars. (b) The top and the bottom images represent the total coincidence and the accidental

coincidence calculated using the first and the second terms of Eq. (6.9), respectively. Subtraction

of these two terms gives (c) the measured two-photon position probability distribution function

P(ys, yi; z). (d) Acquired images of SPDC field and binning the pixels into signal angular sector

θs and idler angular sector θi. (e) The top and the bottom images represent the total coincidence

and the accidental coincidence calculated using the first and the second terms of Eq. (6.10), re-

spectively. Subtraction of these two terms gives (f) the measured two-photon angle probability

distribution function P(θs, θi).

term of Eq. (6.10). The difference of these two images is proportional to the two-photon

angle probability distribution P(θs, θi; z), as shown in Fig. 6.5(f). At θs = θi, the correlation

becomes artificially perfect because we are correlating a pixel with itself. In order to avoid

this we substitute the value of P(θs, θi; z) at all θs = θi pixels with a constant value. We

exclude all θs = θi pixels while extracting ∆(θs|θi; z) from the measured P(θs, θi; z).

Figure 6.6(a) shows the experimentally measured two-photon position probability

distribution function P(ys, yi; z) at different z. We scale the measured P(ys, yi; z) such

that its maximum value is equal to one. We find that the photons are correlated in posi-

tion in the near field whereas they get position anti-correlated in the far-field. In order
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to extract ∆(ys|yi = 0; z) from the measured P(ys, yi; z), we fit P(ys, yi; z) with the func-

tion: Pf (ys, yi; z) = bPr(ys, yi; z) + aPn(ys, yi; z), where Pr(ys, yi; z) = exp[−(ys + yi −

d)2/(2σ2
1 (z))]× exp[−(ys − yi − f )2/(2σ2

2 (z))] is considered as the probability distribu-

tion due to the down-converted photons, while Pn(ys, yi) = exp[−(ys + yi − d)2/(2n2)]×

exp[−(ys − yi − f )2/(2m2)] is considered as the noise contribution. Here b, a, σ1(z),

σ2(z), d, f , m and n are the fitting parameters. We consider n ≫ σ1(z), m ≫ σ2(z)

such that the noise contribution remains much broader than the two-photon position

probability distribution. The width ∆(ys|yi; z) can now be expressed as ∆(ys|yi; z) =

σ1(z)σ2(z)/
√

σ2
1 (z) + σ2

2 (z). Figure 6.6(c) shows ∆(ys|yi; z) as a function of z. The theory

plot has been calculated using the expression given in Eq. (6.2).

Figure 6.6(b) shows the experimentally measured P(θs, θi; z) at different z. We scale

P(θs, θi; z) such its maximum value is equal to one. The P(θs, θi; z) plots show that near the

crystal plane the signal and idler photons have the highest probability of arriving at the

same angular positions. However in the far-field the two photons are most likely to ar-

rive at angular positions separated by π radians. We fit the measured P(θs, θi; z) with the

analytic function: Pf (θs, θi; z) = bPr(θs, θi; z) + a, where Pr(θs, θi; z) = 1/(1 + q cos(θs −

θi − c))3/2. Here, b, a, q, and c, are the fitting parameters. We derive the fitting function

by putting rs = ri in Eq. (6.4). Next, we evaluate ∆(θs|θi; z) by finding the standard devi-

ation of Pr(θs|θi; z) at various z values. Figure 6.6(d) shows the experimental ∆(θs|θi; z) as

a function of z. We find that near the crystal ∆(θs|θi; z) increases as a function of z. How-

ever, beyond z = 10 cm ∆(θs|θi; z) starts to monotonically decreas as a function of z. The

theory plot has been calculated using the expression given in Eq. (6.4). We see that our

experimental results qualitatively follow the corresponding theoretical results. We fur-

ther use fitting parameters for ploting the error bars in Fig. 6.6(c) and 6.6(c). We find still

that the experimental points are above the theory line. This is can be attributed to the fact

that the background noise model is not an accurate one. As a result, we over estimate the

measured conditional uncertainties. Furthermore, We note that using an EMCCD camera

it is relatively easy to measure ∆(ys|yi; z) and ∆(θs|θi; z) close to the crystal (z < 3 cm)

or in the far field (z > 10 cm). However, due to the signal-to-noise limitations, it is not
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FIGURE 6.6: (a) and (b) show the experimentally measured two-photon position and angle prob-

ability distribution P(ys, yi; z) and P(θs, θi; z) as a function of the propagation distance z. (c) and

(d) show the plots of conditional position and angle uncertainties ∆(ys|yi; z) and ∆(θs|θi; z) as a

function of z. The experimental points are shown with solid dots while the solid curve represents

the theoretical predictions.

possible to make measurements in the intermediate regions.

6.3.2 Measurement of two-photon momentum and OAM probability distri-

butions

For measuring P(psy, piy; z) at z, we use a 2 f imaging system and keep the EMCCD cam-

era at the Fourier plane of the transverse plane at z, as depicted in Fig. 6.7(a). We then

measure the two-photon position probability distribution function at the EMCCD camera

plane, which is proportional to the two-photon momentum probability distribution func-

tion P(psy, piy; z) at z. The conditional momentum uncertainty ∆(psy|piy; z) is obtained by
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FIGURE 6.8: (a) Schematic of the experimental setup for measuring OAM coincidence and the

OAM correlation. LPF: long-pass filter, BS: beam splitter, SLM: spatial light modulator, SMF:

single-mode fiber, F: interference filter. The blower heater (BH) is used for generating turbulence,

and it is switched on in the path of the SPDC field when studying the effect of turbulence on

entanglement propagation. (b) and (c) are the experimentally measured P(ls, li; z) and P(ls|li; z)

at z = 50 cm. The fitting is the based on the noise model depicted in Eq. (6.8).

multiplying the conditional position uncertainty at the EMCCD plane by kh̄/ f , where f

is the focal length of the lens. Figure 6.7(b) shows the measured P(pys, pyi; z) and the ex-

perimental value of ∆(psy|piy) is 2.13h̄ ± 0.1h̄ mm−1 and it matches quite well with the

theoretical value 1.97h̄ mm−1.
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For measuring the two-photon OAM probability distribution, we use single-photon

avalanche diode (SPAD) detectors [40, 53]. Figure 6.8(a) shows the schematic of the ex-

perimental setup. As illustrated in the figure, we image the transverse plane at z onto

the SLMs kept in the signal and idler arms. Specific holograms are displayed on both

the SLMs, and then the signal and idler SLM planes are imaged onto the input facets of

single-mode fibers (SMFs) kept in the signal and idler arms. The combination of the holo-

gram and SMF in each arm projects the input field into a particular OAM mode which

then gets detected by the SPAD detector through the SMF. An electronic coincidence cir-

cuit then yields the coincidence counts. By displaying different holograms on the SLMs,

we measure the two-photon OAM probability distribution.

In section 6.2.2, we have already discussed that ∆(ls|li; z) is independent of z due to

the conservation of OAM in SPDC process. We verify this by making several measure-

ments of P(ls, li; z) as a function of z. We plot the experimentally measured two-photon

OAM probability distribution function P(ls, li; z) and the conditional OAM probability

distribution function P(ls|li; z) at z = 50 cm in Figs. 6.8(b) and 6.8(c), respectively. As

described in section 6.2.2, we fit the conditional distribution with the analytical function

P(ls|li; z) = Sls
δls,0 + N exp

[

−l2
s /(2σ2

f )
]

, where S0, N, and σf are the fitting parameters.

We find the standard deviation of P(ls|li; z) and thus ∆(ls|li; z) to be 0.72h̄ ± 0.04h̄ in our

experiments.

6.3.3 Revival of angle-OAM entanglement

We now plot the measured conditional uncertainty products ∆(ys|yi; z)∆(psy|piy; z) and

∆(θs|θi; z)∆(ls|li; z) as a function of z in Figs. 6.9(a) and 6.9(b), respectively. Figures 6.9(a)

and 6.9(b) also show the theory plots. We see good agreement bewteen the theory and

experiments. We find that entanglements in both position-momentum and angle-OAM

bases are lost within a few centimeters from the down-conversion crystal. However,

while the position-momentum entanglement never revives, the angle-OAM entangle-

ment revives after the photons have propagated 24 cm away from the crystal; experi-
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FIGURE 6.9: (a) Conditional position-momentum uncertainty product ∆(ys|yi; z)∆(psy|piy; z) as a

function of the propagation distance z. The solid dots are the experimental results and the solid

line is the best theoretical fit. (b) Conditional angle-OAM uncertainty product ∆(θs|θi; z)∆(ls|li; z)

as a function of the propagation distance z. The solid dots are the experimental results and the

solid line is the best theoretical fit. The solid dots are the experimental results and the solid line

is the best theoretical fit. As indicated on the plot, the theoretical prediction for entanglement

revival is at z = 24 cm while we observe it at about z = 28 cm.

mentally, we find this distance to be about 28 cm. After the revival, the angle-OAM

entanglement does not decay again, as demonstrated in our experiments up to 60 cm.

6.4 Angle-OAM entanglement revival in turbulence

We next investigate whether or not the propagation-induced entanglement revival fea-

ture survives in the presence of turbulence, which is often the limiting factor in any real-

istic long-distance application.

6.4.1 Propagation of two-photon angle probability distribution in turbulence

Figure 6.10(a) illustrates the propagation of SPDC photons through a planar turbulence

kept at a distance z = d from the crystal plane located at z = 0. We are interested in

finding the two-photon angle probability distribution function at a propagation distance

z. The presence of turbulence introduces statistical randomness in the two-photon field,

and so we need to describe the field propagation in terms of the two-photon cross-spectral
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distribution function P(θs, θi; z) at various z in the presence of turbulence. (d) The theoretical and

experimental plots of ∆(θs|θi; z) as a function of z.

density function. From z = 0 up to z = d, the two-photon field remains pure and can be

described by the two-photon wavefunction ψ(ρ′
s,ρ

′
i; d). Therefore, the two-photon cross-

spectral density function W(ρ′
s1,ρ′

i1,ρ′
s2,ρ′

i2; d) right after the turbulence plane z = d can

be written as

W(ρ′
s1,ρ′

i1,ρ′
s2,ρ′

i2; d) = ψ∗(ρ′
s1,ρ′

i1; d)ψ(ρ′
s2,ρ′

i2; d)Wturb(ρ
′
s1,ρ′

s2,ρ′
i1,ρ′

i2), (6.11)

where, ρ′
s ≡ (x′s, y′s), and ρ′

i ≡ (x′i, y′i) are the transverse co-ordinates of signal and idler

photons respectively, at z = d. The term ψ∗(ρ′
s1,ρ′

i1; d)ψ(ρ′
s2,ρ′

i2; d) is the two-photon

cross-spectral density function right before the turbulence plane. The effect due to the tur-

bulence is captured through the cross-spectral density function, which we approximate

by modelling the turbulence in terms of a Gaussian function: Wturb(ρ
′
s1,ρ′

s2,ρ′
i1,ρ′

i2) =

exp
[

−[(ρ′
s2 − ρ′

s1)
2 + (ρ′

i2 − ρ′
i1)

2]/(2r2)]
]

, where r is the turbulence strength [188, 234].
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We write the above equation as

W(ρ′
s1,ρ′

i1,ρ′
s2,ρ′

i2; d) =
1

(λd)4
Wturb(ρ

′
s1,ρ′

s2,ρ′
i1,ρ′

i2)e
ik
2d (ρ

′2
s2+ρ′2

i2−ρ′2
s1−ρ′2

i1)

ˆ

ψ∗(ρ′′
s1,ρ′′

i1; 0)

ψ(ρ′′
s2,ρ′′

i2; 0)e
ik
2d (ρ

′′2
s2 +ρ′′2

i2 −ρ′′2
s1 −ρ′′2

i1 )e−
ik
d (ρ

′
s2·ρ′′

s2−ρ′
s1·ρ′′

s1)e−
ik
d (ρ

′
i2·ρ′′

i2−ρ′
i1·ρ′′

i1)dρ′′
s2dρ′′

s1dρ′′
i2dρ′′

i1,

(6.12)

where ψ(ρ′′
s ,ρ′′

i ; 0) is the two-photon wave-function at the crystal plane z = 0 and is given

by [56–58]:

ψ(ρ′′
s ,ρ′′

i ; 0) = A exp

[

− (ρ′′
s + ρ′′

i )
2

4w2
0

]

exp

[

−|ρ′′
s − ρ′′

i |2
4σ2

0

]

.

Now, by propagating W(ρ′
s1,ρ′

i1,ρ′
s2,ρ′

i2; d) from z = d up to z = z, we find the two-

photon cross-spectral density function at z and thereby the two-photon position proba-

bility distribution function P(ρs,ρi; z):

P(ρs,ρi; z) =
1

λ4 (z − d)4

ˆ

W(ρ′
s1,ρ′

i1,ρ′
s2,ρ′

i2; d)e
ik

2(z−d)
(ρ′2

s2+ρ′2
i2)e−(ρ′2

s1+ρ′2
i1)e

− ik
(z−d)

ρs·(ρ′
s2−ρ′

s1)

× e
− ik

(z−d)
ρi·(ρ′

i2−ρ′
i1)dρ′

s2dρ′
s1dρ′

i2dρ′
i1. (6.13)

By substituting Eq. (6.12) into Eq. (6.13), we compute P(ρs,ρi; z) as a function of z. We use

the transformationsρs = (rs cos θs, rs sin θs) and ρi = (ri cos θi, ri sin θi) to get P (rs, θs, ri, θi)

and write it as

P (θs, θi; z) =

¨

rsriP (rs, θs, ri, θi; z) drsdri. (6.14)

Figure 6.10(b) shows the theoretical P(θs, θi; z) at different z for the relevant experimental

parameters of d = 15 cm, L = 5 mm, w0 = 507 µm. For the theoretical plots, we use the

turbulence strength r as a fitting parameter and find its value to be 0.125 mm.

We now experimentally measure P(θs, θi; z) at different z using the experimental setup

depicted in Figs. 6.4 with the blower heater (BH) switched on and kept at z = 15 cm to

introduce turbulence in the path of the down-converted photons. Figure 6.10(c) shows

the experimentally measured P(θs, θi; z) at different z. We note that the experimentally

measured P(θs, θi; z) contains some noise distribution, which gets prominent at large z.
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This can be attributed to the fact that in the experiment, we insert a distributed turbulence

in the path of the two-photon field, whereas in the theory, we approximate that as a

planar turbulence. Nevertheless, the diagonal correlation in the experimentally observed

P(θs, θi; z) matches with the theoretical predictions. Using the procedure described in

section 6.3.1, we extract the conditional angle uncertainty ∆(θs|θi; z) from Figure 6.10(c)

and plot them in Figure 6.10(d). In order to minimize the effect of noise distribution on

the estimation of ∆(θs|θi; z), we select a region of P(θs, θi; z) as shown by the dotted red

box in Fig. 6.10(c). Figure 6.10(d) shows our experimentally measured ∆(θs|θi; z) as a

function of z along with the theory prediction.

6.4.2 Two-photon OAM probability distribution in turbulence

First, we present a theoretical model to evaluate the influence of turbulence on the con-

ditional OAM distribution P(ls|li; z). Within paraxial approximation and the Gaussian

pump beam assumption [40, 155], the OAM remains conserved in SPDC. This means

that if the idler photon is detected with OAM lih̄ = 0, the signal photon is guaran-

teed to be detected with OAM lsh̄ = 0. Such a signal mode can be represented as:

ψs(ρ′
s) = exp

[

−ρ′
s/4σ2

r

]

. For evaluating the influence of turbulence on the conditional

OAM distribution P(ls|li; z) of the signal photon, we simply need to evaluate how the

Gaussian mode ψs(ρ′
s) = exp

[

−ρ′
s/4σ2

r

]

gets affected by turbulence. For this purpose,

we calculate the cross-spectral density function of the signal photon right after the turbu-

lence plane z = d [see Fig. 6.10(a)]. From z = 0 up to z = d, the signal field ψs(ρ′
s) remains

pure. Therefore, the cross-spectral density function W(ρ′
s1,ρ′

s2; d) right after the turbu-

lence plane z = d can be written as W(ρ′
s1,ρ′

s2; d) = ψ∗(ρ′
s1; d)ψ(ρ′

s2; d)Wturb(ρ
′
s1,ρ′

s2).

where, ρ′
s ≡ (x′s, y′s), is the transverse co-ordinates of signal photon at z = d plane. The

term ψ∗(ρ′
s2; d)ψ(ρ′

s1; d) is the cross-spectral density function of the signal photon at z = d

right before the turbulence plane. Wturb(ρ
′
s2,ρ′

s1) is the cross-spectral density introduced

by the turbulence. We approximate it as Wturb(ρ
′
s2,ρ′

s1) = exp
[

−(ρ′
s2 − ρ′

s1)
2/(2r2)

]

,

where r is the turbulence strength. Therefore, the cross-spectral density of the signal
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FIGURE 6.11: The experimentally measured P(ls|li; z) at z = 50 cm in turbulence. The fitting is

the based on the noise model depicted in Eq. (6.18).

photon right after the turbulence becomes

W(ρ′
s1,ρ′

s2; d) = exp

[

−ρ′2
s1 + ρ′2

s2

4σ2
r

]

exp

[

− (ρ′
s2 − ρ′

s1)
2

2r2

]

. (6.15)

Now, by propagating the above cross-spectral density function from z = d to z = z,

we obtain the cross-spectral density function W(ρs1,ρs2; z) at z = z

W(ρs1,ρs2; z) = K exp

[

− ik

2R(z)
(ρ2

s2 − ρ2
s1)

]

exp

[

−ρ2
s1 + ρ2

s2

4σr(z)2

]

exp

[

− ∆ρ2
s

2r(z)2

]

, (6.16)

where K is a z−dependent constant, ∆ρs = |ρ2 − ρ1|, r(z) = r

√

1 +
(

z−d
ksσrδ

)2
, σr(z) =

σr

√

1 +
(

z−d
ksσrδ

)2
, 1

δ2 = 1
r2 + 1

4σ2
r
, and ks = π/λp. We use the transformation ρs1 ≡

(rs1 cos θs1, rs1 sin θs1) and ρs2 ≡ (rs2 cos θs2, rs2 sin θs2) in order to write W(ρs1,ρs2; z) as

Ws(rs, θs1, θs2; z). The OAM distribution of the signal photon is same as the conditional

distribution P(ls|li; z), which we write as

P(ls|li; z) =

˚

rsWs(rs, θs1, θs2; z)eils(θs2−θs1)drsdθs1dθs2. (6.17)

We compute the above integral numerically and find that it fits very closely to the func-

tion of type a exp [−b|ls|], where a and b are constant. We also find that P(ls|li; z) does not

depend on z after propagating through turbulence. We thus write the conditional OAM
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distribution as

P(ls|li; z) = a exp [−b|ls|] + N exp

[

− l2
s

2σ2
f

]

. (6.18)

Here, we have added the noise term for reasons described in section 6.2.2.

We repeat the experiment depicted in Fig. 6.8(b) in the OAM basis with the blower

heater (BH) switched on. Figure 6.11 shows the experimentally measured P(ls|li; z) at

z = 50 cm. We fit P(ls|li; z = 50) with Eq. (6.18) and obtain the experimental uncertainty

∆(ls|li; z) to be 0.94h̄ ± 0.02h̄ radian−1.
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FIGURE 6.12: Conditional angle-OAM uncertainty product ∆(θs|θi; z)∆(ls|li; z) as a function of

the propagation distance z in the presence of a turbulent medium. As indicated on the plot, in the

presence of turbulence, the theoretical prediction for entanglement revival is at z = 35 cm while

we observe it experimentally at about 45 cm.

6.4.3 Entanglement revival

We now plot the product ∆(θs|θi; z)∆(ls|li; z) in Fig. 6.12. The solid line represents the the-

oretically calculated value of the uncertainty product in the presence of turbulence. Our

theoretical results show that in the presence of turbulence, the angle-OAM entanglement

revives at z = 35 cm; experimentally, we find this distance to be about 45 cm. Therefore,

we find that although turbulence does adversely affect angle-OAM entanglement, its ef-

fect can be completely bypassed by just propagating the photons further ahead by some

distance.
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6.5 Summary

In summary, using the two-photon field produced by SPDC, we have reported exper-

imental observations of propagation-induced entanglement revival in the angle-OAM

bases. We have demonstrated entanglement revival even in the presence of turbulence,

the only effect of which is to increase the propagation distance for revival. Once revived,

the two photons remain entangled upto an arbitrary propagation distance. We note that

the entanglement revival strategies in turbulence or random media are usually based

on adaptive optics techniques [251, 255, 256], which are usually based on the feedback

mechanism and as a result quite difficult to implement. On the other hand, in our work,

we have shown that the entanglement can be revived simply by further propagating the

two-photon field by some distance, without having to use any adaptive optics techniques.

Thus, unlike the position-momentum bases, the angle-OAM bases bring in an indepen-

dent parameter—the propagation distance—for entanglement revival in turbulent envi-

ronments and can therefore have important implications for long-distance quantum in-

formation applications.



Chapter 7

Conclusions and Discussions

This thesis focuses on spatial coherence in spatially partially coherent fields and spatial

entanglement in the two-photon SPDC field. It presents new experimental results in the

context of their generation, measurement, and application.

We have begun by studying spatial coherence in spatially partially coherent fields.

We have proposed and demonstrated an experimental technique for generating spatially

partially coherent fields with versatile spatial coherence functions in a controllable and

accurate manner. The existing techniques for generating spatially partially coherent fields

are based on introducing randomness in a spatially completely coherent field and are lim-

ited in terms of control and accuracy with which these fields can be generated. In contrast,

our technique does not introduce additional randomness, and it uses the coherent mode

representation of a spatially partially coherent field. We have demonstrated the genera-

tion of high-quality propagation-invariant spatially stationary partially coherent fields by

producing incoherent mixtures of plane waves using the combination of primary planar

spatially incoherent LED source and a converging lens. To showcase the effectiveness of

our generation scheme, we have generated such fields with fringe-like structures in the

cross-spectral density function with good accuracy. We have used the same approach for

generating the GSM fields by producing their coherent eigenmodes using an SLM and
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incoherently mixing them in a proportion decided by their eigenspectrum.

Next, we have focused on the measurement of spatial coherence in an optical field. We

have proposed a technique for measuring two-dimensional spatial cross-spectral density

function in a two-shot manner. Our technique has demonstrated that a Michelson inter-

ferometer with an additional converging lens in one of the interferometer arms results

in encoding the cross-spectral density function of the input field in the output interfero-

gram. Using this technique, we have measured several structured cross-spectral density

functions with very good accuracy. In contrast, to the existing methods, our presented

method does not involve any loss or require multiple measurements.

Next, we have focused on certifying the position-momentum entanglement in a two-

photon field through EPR-correlation measurement. All existing schemes for measuring

EPR-correlation require coincidence detection and thus suffer from several experimental

difficulties that adversely affect the measurement accuracy. We have proposed that if a

pure two-photon state satisfies a specific set of conditions, then the position-momentum

EPR-correlations can be obtained by measuring position and momentum cross-spectral

density functions of one of the photons. Our measurement scheme does not require co-

incidence detection. We have experimentally demonstrated this proposed scheme for

pure two-photon states produced by collinear type-I SPDC. We have reported the most

accurate measurement of position-momentum EPR-correlations in the literature.

Next, we have focused on applications of spatial coherence in the context of imag-

ing and optical communication through random media. First, we have demonstrated

that enhanced imaging in scattering environments can be achieved by controlling the

propagation of spatial coherence of the illuminating field. Spatially partially coherent

light fields have been routinely used for imaging a particular transverse plane through

scattering media. However, the increasing spatial coherence length of such fields upon

propagation results in degradation in image quality as the object moves away from the il-

luminating source. We have demonstrated imaging spatially separated transverse planes

with the same image contrast using the above-mentioned partially coherent source with
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propagation-invariant spatial coherence. Furthermore, we have tailored the propaga-

tion of coherence of the illuminating field to access the minimum-possible spatial coher-

ence length at the plane of the object to be imaged. Using this source, we have demon-

strated imaging of different transverse planes with maximum possible image contrast.

We have then demonstrated the implication of structured spatial coherence function in

optical communication through turbulence. Many free-space communication protocols

have used the transverse intensity profile of a structured spatially perfectly coherent field

for encoding information. However, the structures in the intensity profiles of such co-

herent fields start to degrade in turbulent environments, and the structural degradation

increases with the increase in turbulence strength. As a result, free-space communication

becomes difficult with structured coherent light in turbulent environments. We have ad-

dressed this issue by demonstrating the structural robustness of both transverse intensity

and spatial coherence functions of a partially coherent field in the presence of turbulence.

We have shown that for a given turbulence strength, the structural degradation can be

mitigated by reducing the spatial coherence length of the field.

Lastly, we have reported the revival of entanglement in angle-OAM bases through

propagation. The position-momentum entanglement starts decaying as the SPDC pho-

tons propagate away from the down-conversion crystal, and the entanglement is com-

pletely lost within a few centimeters of propagation distance. As a result, the position-

momentum entanglement does not remain a suitable resource for long-distance quan-

tum information applications. To address this issue, we have explored the propagation

of angle-OAM entanglement and reported that the angle-OAM entanglement displays a

remarkable propagation behaviour. We have found that the angle-OAM entanglement

in SPDC photons also decays within a few centimeters from the source; however, a fur-

ther propagation induces the revival behaviour in entanglement. We have experimen-

tally demonstrated the propagation-induced entanglement revival in angle-OAM bases

by measuring EPR correlation upto a propagation distance of 60 cm. We have further

demonstrated the entanglement revival behaviour of SPDC photons even in the turbu-

lent environment, and its influence is to increases the propagation distance for revival.
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The results of this thesis can offer new avenues in the direction of spatial correla-

tions in optical fields. Our presented generation scheme can produce on-demand custom-

designed spatial coherence functions and their structural robustness in the turbulent en-

vironment can enable a new research direction in long-distance optical communication.

Our imaging scheme based on controlling the propagation of spatial coherence can be

implemented in many realistic situations, including long-distance imaging, LiDAR tech-

nology, biomedical imaging, etc.

The presented measurement scheme of two-photon position-momentum EPR corre-

lation contributes to the research theme of entanglement certification or quantification of

a two-photon state by performing measurements on one of the photons. We expect that

our measurement scheme can be extended for certifying other continuous variable entan-

glements such as time-energy and angle-OAM by developing the cross-spectral density

function measurement tools in the corresponding degrees of freedom. Next, the spatial

entanglement revival through propagation opens up a few interesting questions in the

context of spatial entanglement propagation: how the entanglement revival feature gets

affected if we change the transverse profile, propagation property, and spatial coherence

of the pump, and can we engineer the propagation of entanglement using the above-

mentioned pump parameters. These questions are relevant to the existing research pro-

gram of quantum state engineering that attempts to enhance the performance of many

applications. Moreover, strengthing of two-photon angle-correlation upon propagation

has no known reported classical counterpart. Hence, such correlations can be used in

quantum imaging protocols to achieve enhanced imaging of spatially separated angular

objects.

We note that a significant part of this thesis has outlined the advantages of spatial

partial coherence and spatial entanglement in optical fields. So far both spatial partial

coherence and spatial entanglement have been used as independent tools for improv-

ing the capability and performance of many practical applications. Therefore, it can be

an interesting question to explore whether combining partial coherence with spatial en-

tanglement can offer any new advantage, which is impossible to achieve through either
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partial spatial coherence or spatial entanglement. This question might shed some new

light on applications related to spatially entangled mixed states, a relatively less explored

research theme so far.





Appendix A

Calculation of conditional

probability distribution and

cross-spectral density functions

We theoretically compute the conditional probability distribution and cross-spectral den-

sity functions of the signal photon in the position and momentum bases for the following

mixed two-photon states:

A.0.1 Introducing mixedness through turbulence

Consider a situation where the down-converted photons interact with a planar turbu-

lence right after the crystal plane and the turbulence introduces statistical randomness

in both signal and idler photon fields. As a result, the two-photon field does not remain

pure after the turbulence. We describe the two-photon field through cross-spectral den-

sity function and it is written in the position basis as

Wtp(ρs1
,ρi1 ,ρs2 ,ρi2) = ψ∗(ρs1

,ρi1)ψ(ρs2 ,ρi2)Wturb(ρs1
,ρs2 ,ρi1 ,ρi2), (A.1)
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where ρs ≡ (xs, ys) and ρi ≡ (xi, yi) are the transverse positions of the signal and

idler photons respectively. ψ∗(ρs1
,ρi1)ψ(ρs2 ,ρi2) is the two-photon cross-spectral density

function just before the turbulence, and the influence of turbulence is captured by the

cross-spectral density function Wturb(ρs1
,ρs2 ,ρi1 ,ρi2) = exp[−6.88[|ρs2 − ρs1

|2 + |ρi2 −

ρi1 |2]/(2r2
0)] [188, 189], where r0 is the Fried parameter. Smaller values of r0 implies

higher turbulence strength, with r0 = 0 implying infinite turbulence and a completely

mixed state and r0 = ∞ implying no turbulence and thus a pure two-photon state. The

above cross-spectral density function can be rewritten in the following product form

Wtp(ρs1
,ρi1 ,ρs2 ,ρi2) = Wtp(xs1

, xi1 , xs2 , xi2)Wtp(ys1
, ys2 , yi1 , yi2), (A.2)

where

Wtp(xs1
, xi1 , xs2 , xi2) = exp

[

− (xs1
+ xi1)

2 + (xs2 + xi2)
2

4w2
0

]

exp

[

− (xs1
− xi1)

2 + (xs2 − xi2)
2

4σ2
0

]

× exp

[

−6.88
(xs2 − xs1

)2 + (xi2 − xi1)
2

2r2
0

]

, (A.3)

Wtp(ys1
, yi1 , ys2 , yi2) = exp

[

− (ys1
+ yi1)

2 + (ys2 + yi2)
2

4w2
0

]

exp

[

− (ys1
− xi1)

2 + (ys2 − yi2)
2

4σ2
0

]

× exp

[

−6.88
(ys2 − ys1

)2 + (yi2 − yi1)
2

2r2
0

]

. (A.4)

The one dimensional conditional position probability distribution function P(xs|xi = 0)

and cross-spectral density function W(xs,−xs) of the signal photon are given by

P(xs|xi = 0) = Wtp(xs, xi = 0, xs, xi = 0) (A.5)

W(xs,−xs) =

ˆ

Wtp(xs, xi,−xs, xi)dxi. (A.6)

From the above equations, we calculate P(xs|xi = 0) and W(xs,−xs) as a function of r0

and we plot them together in Fig. A.1(a). Both P(xs|xi = 0) and W(xs,−xs) plots have

been scaled such that their maximum value is one. We find that W(xs,−xs) shows a good
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match with P(xs|xi = 0) at different r0.

We next find the two-photon momentum cross-spectral density function Wtp(ps1
,pi1 ,ps2 ,pi2)

right after the turbulence plane using the following equation

Wtp(ps1
,pi1 ,ps2 ,pi2) =

ˆ

Wtp(ρs1
,ρi1 ,ρs2 ,ρi2)e

−i(ρs1
·ps1

+ρi1
·pi1

−ρs2
·ps2

−ρs2
·ps2

)/h̄dρs1
dρs2 dρi1 dρi2

(A.7)

where ps ≡ (pxs, pys) and pi ≡ (pxi, pyi) are transverse momenta of the signal and idler

photons respectively. The one dimensional conditional momentum probability distribu-

tion function P(pxs|pxi = 0) and cross-spectral density function W(pxs,−pxs) of the signal

photon are given by

P(pxs|pxi = 0) = Wtp(pxs, pxi = 0, pxs, pxi = 0), (A.8)

W(pxs,−pxs) =

ˆ

Wtp(pxs, pxi,−pxs, pxi)dpxi, (A.9)

where

Wtp(pxs1
, pxi1

, pxs2 , pxi2) =

ˆ

Wtp(xs1
, xi1 , xs2 , xi2)e

−i(xs1
pxs1

+xi1
pxi1

−xs2
pxs2

−xi2
pxi2

)/h̄

dxs1
dxs2 dxi1 dxi2 . (A.10)

Figure A.1(b) shows P(pxs|pxi = 0) (solid curve) and W(pxs,−pxs) (dashed curve) at dif-

ferent r0. Both P(pxs|pxi = 0) and W(pxs,−pxs) plots have been scaled such that their

maximum value is one. We find that with the decrease in turbulence strength the mis-

match between W(psx,−psx) and P(psx|pix = 0) decreases. Now from the above con-

ditional probability distribution and cross-spectral density functions we evaluate E as a

function of r0 and it is shown in Fig.2(a) in chapter 4.

A.0.2 Introducing mixedness by using a spatially partially coherent pump

we consider the situation in which the two-photon states is produced by SPDC using

a spatially partially coherent pump field. To keep the analysis simple, we consider a
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FIGURE A.1: (a) Conditional position probability distribution function P(xs|xi = 0) (solid curve)

and position cross-spectral density function W(xs,−xs) (dashed curve) of the signal photon at

different r0. (b) Conditional momentum probability distribution function P(pxs|pxi = 0) (solid

curve) and momentum cross-spectral density function W(pxs,−pxs) (dashed curve) of the signal

photon at different r0.

Gaussian Schell Model (GSM) field [70] as the spatially partially coherent pump field.

The two-photon position cross-spectral density function is given by [192]

W(ρs1
,ρi1 ,ρs2 ,ρi2) = A exp

[

−|ρs1
+ ρi1 |2 + |ρs2 + ρi2 |2

4w2
0

]

× exp

[

−|ρs2 + ρi2 − ρs1
− ρi1 |2

2σ2
c

]

exp

[

−|ρs1
− ρi1 |2 + |ρs2 − ρi2 |2

4σ2
0

]

, (A.11)

where w0 and σc are the pump beam waist and pump transverse spatial coherence length

respectively, at the crystal plane. The transverse spatial coherence length of the pump σc

ranges from 0 to ∞, with σc = 0 implying a completely mixed state and σc = ∞ implying

a pure state. The above cross-spectral density function in Eq. (A.11) can be rewritten as

Wtp(ρs1
,ρi1 ,ρs2 ,ρi2) = Wtp(xs1

, xi1 , xs2 , xi2)Wtp(ys1
, ys2 , yi1 , yi2), (A.12)
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FIGURE A.2: (a) Conditional position probability distribution function P(xs|xi = 0) (solid curve)

and position cross-spectral density function W(xs,−xs) (dashed curve) of the signal photon at

different σc. (b) Conditional momentum probability distribution function P(pxs|pxi = 0) (solid

curve) and momentum cross-spectral density function W(pxs,−pxs) (dashed curve) of the signal

photon at different σc.

where

Wtp(xs1
, xi1 , xs2 , xi2) = A′ exp

[

− (xs1
+ xi1)

2 + (xs2 + xi2)
2

4w2
0

]

× exp

[

− (xs2 + xi2 − xs1
− xi1)

2

2σ2
c

]

exp

[

− (xs1
− xi1)

2 + (xs2 − xi2)
2

4σ2
0

]

, (A.13)

Wtp(ys1
, yi1 , ys2 , yi2) = A′ exp

[

− (ys1
+ yi1)

2 + (ys2 + yi2)
2

4w2
0

]

× exp

[

− (ys2 + yi2 − ys1
− yi1)

2

2σ2
c

]

exp

[

− (ys1
− yi1)

2 + (ys2 − yi2)
2

4σ2
0

]

, (A.14)

From the above equations we evaluate the one dimensional conditional position prob-

ability distribution P(xs|xi = 0) and cross-spectral density function W(xs,−xs) respec-

tively, of the signal photon and plot them together in Fig. A.2(b) as a function of σc. We

scale both P(xs|xi = 0) and W(xs,−xs) such that their maximum value is one. We

find that W(xs,−xs) almost matches with P(xs|xi = 0) at different σc. We next use
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Eq. (A.13) along with Eq. (A.10) to evaluate two-photon momentum cross-spectral den-

sity function Wtp(pxs1
, pxi1 , pxs2 , pxi2) and from that we plot P(pxs|pxi = 0) (solid curve)

and W(pxs,−pxs) (dashed curve) in Fig. A.2(b) as a function of σc. We scale both P(pxs|pxi=

0) and W(pxs,−pxs) such that their maximum value is one. We find that the mismatch

between W(pxs,−pxs) and P(pxs|pxi = 0) decreases with the increase in σc. From the

above conditional probability distribution functions and cross-spectral density functions,

we evaluate E as a function of σc and it is shown in Fig.2(b) in chapter 4.



Appendix B

Derivation of two-photon and

single-photon position probability

distribution

B.1 Two-photon position probability distribution as a function

of propagation distance z

Figure B.1 illustrates the propagation of two-photon SPDC field from the crystal plane at

z = 0 to a propagation distance z. For a Gaussian pump with beam waist at the crystal

plane z = 0, the two-photon wavefunction in the position basis at the crystal plane z = 0

is given by [56–58]:

ψ(ρ′′
s ,ρ′′

i ; 0) = A exp

[

− (ρ′′
s + ρ′′

i )
2

4w2
0

]

exp

[

−|ρ′′
s − ρ′′

i |2
4σ2

0

]

, (B.1)

where ρ′′
s ≡ (x′′s , y′′s ) and ρ′′

i ≡ (x′′i , y′′i ) are the transverse positions of the signal and

idler photons, respectively at z = 0, and k = π/λp. Also, w0 is the pump beam waist at

z = 0, σ0 =
√

0.455Lλp/2π, L is the length of the crystal, and λp is the wavelength of the

pump field. Now we use the propagation equation in Ref [57,58] for propagating the two-
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FIGURE B.1: Illustrating the propagation of the two-photon down-converted field.

photon wavefuntion ψ(ρ′′
s ,ρ′′

i ; 0) from z = 0 to z = z plane and write the wavefunction

ψ(ρs,ρi; z) at z = z as

ψ(ρs,ρi; z) =
(

1/z2
)

e
ik
2z (ρ

2
s+ρ2

i )
ˆ

ψ(ρ′′
s ,ρ′′

i ; 0)e
ik
2z (ρ

′′2
s +ρ′′2

i )e−
ik
z (ρs·ρ′′

s +ρi·ρ′′
i )dρ′′

s dρ′′
i , (B.2)

where ρs ≡ (xs, ys) and ρi ≡ (xi, yi) are the transverse positions of the signal and idler

photons, respectively, at z = z. We use the transformation

ρ′′
+ = (ρ′′

s + ρ′′
i )/

√
2 ρ′′

− = (ρ′′
s − ρ′′

i )/
√

2, (B.3)

ρ+ = (ρs + ρi)/
√

2 ρ− = (ρs − ρi)/
√

2, (B.4)

in Eq. (B.2) and it takes the following form

ψ(ρ+,ρ−; z) =
(

1/z2
)

e
ik
2z (ρ

2
++ρ2

−)
ˆ

ψ(ρ′′
+,ρ′′

−; 0)e
ik
2z (ρ

′′2
+ +ρ′′2

− )e−
ik
z (ρ+·ρ′′

++ρ−·ρ′′
−)dρ′′

+dρ′′
−.

(B.5)

Here ψ(ρ′′
+,ρ′′

−; 0) = A exp
[

−ρ′′2
+ /2w2

0

]

exp
[

−ρ′′2
− /2σ2

0

]

and we write the above Eq. (B.5)

in the following product form

ψ(ρ+,ρ−; z) =
(

A/z2
)

ψ(ρ+; z)× ψ(ρ−; z), (B.6)
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where

ψ(ρ+; z) = e
ik
2zρ

2
+

ˆ

exp
[

−ρ′′2
+ /2w2

0

]

e
ik
2zρ

′′2
+ e−

ik
z ρ+·ρ′′

+dρ′′
+,

ψ(ρ−; z) = e
ik
2zρ

2
−

ˆ

exp
[

−ρ′′2
− /2σ2

0

]

e
ik
2zρ

′′2
− e−

ik
z ρ−·ρ′′

−dρ′′
−

We now evaluate the above intergrals analytically and obtain the expression for two-

photon wavefunction ψ(ρs,ρi; z) in the following form

ψ(ρs,ρi; z) = A′ exp

[

− (ρs + ρi)
2

4w(z)2

]

exp

[

−|ρs − ρi|2
4σ(z)2

]

exp

[

− ik

4z
c(z)(ρs + ρi)

2

]

× exp

[

− ik

4z
d(z)(ρs − ρi)

2

]

, (B.7)

where c(z) = 1/
(

1 + k2w4
0/z2

)

, d(z) = 1/
(

1 + k2σ4
0 /z2

)

, w(z) = w0

√

1 + z2/(k2w4
0),

and σ(z) = σ0

√

1 + z2/(k2σ4
0 ). A′ is a z-dependent constant. The corresponding two-

photon proabaility distribution function is given by

P(ρs,ρi; z) = |ψ∗(ρs,ρi; z)ψ(ρs,ρi; z)|2 = |A′|2 exp

[

− (ρs + ρi)
2

2w(z)2

]

exp

[

−|ρs − ρi|2
2σ(z)2

]

.

(B.8)
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FIGURE B.2: Numerically calculated position uncertainty ws(z) of the signal photon as a function

of z. The two dotted lines show the z-scaling of the uncertainty in the near- and far-field regions.
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B.2 Calculation of signal photon position uncertainty

From the two-photon probability distribution in Eq. (6.2), we find the position probability

distribution P(ρs; z) of the signal photon in the following manner

P(ρs; z) =

ˆ

P(ρs,ρi; z)dρi = N exp
[

−ρ2
s /2ws(z)

2
]

, (B.9)

where ws(z) = ∆(ys|yi; z)/
√

1 − (D/C)2 is the position uncertainty of the signal photon.

We now plot ws(z) as a function of z in Fig. (B.2). We find that ws(z) monotonically

increases upon propagation. The two dotted lines in Fig. (B.2) show the near- and far-

field z scaling of ws(z). We find that in the near- and far-field behaves as ws(z) ≈ w(z)/2

and ws(z) ≈ σ(z)/2 respectively.



Appendix C

Near-field and far-field behaviours of

the conditional position and angle

uncertainties

C.1 Conditional position uncertainty

The two-photon position probability distribution function is given by Eq. (6.2). By setting

ρi = 0, we write the conditional positional probability distribution function P(ρs|ρi; z) as

P(ρs|ρi; z) = |A|2 exp

[

−ρ2
s

2

(

1

w(z)2
+

1

σ(z)2

)]

,

where w(z)2 = w2
0

[

1 +
z2

k2w4
0

]

,

σ(z)2 = σ2
0

[

1 +
z2

k2σ4
0

]

, (C.1)

and |ρs|2 = ρ2
s . From Eq. (C.1), we obtain the conditional position uncertainty in the

y-direction as

∆(ys|yi; z) =

√

1
1

w(z)2 +
1

σ(z)2

. (C.2)
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For the experimental parameters of interest, we have w0 = 507 µm and σ0 = 11.3 µm.

Therefore, in the near-field region, we have w(z) ≫ σ(z) and thus the conditional uncer-

tainty in the y-direction becomes

∆(ys|yi; z) ≈ σ(z) = σ0

√

1 +
z2

k2σ4
0

. (C.3)

In the far-field, we have w(z) ≪ σ(z) and thus the conditional uncertainty in the y-

direction becomes

∆(ys|yi; z) ≈ w(z) = w0

√

1 +
z2

k2w4
0

. (C.4)

From Eqs. (C.3) and (C.4), we find that the conditional position uncertainty ∆(ys|yi; z)

increases monotonically as a function of z in both the near- and far-field regions. While

the uncertainty increases as σ(z) in the near-field, it increases as w(z) in the far-field. Fig-

ure C.1(a) shows the plot of the numerically calculated conditional position uncertainty

∆(ys|yi; z) as a function of z. The two dotted lines in Fig. C.1(a) show the z-scaling of the

uncertainty in the near- and far-field regions.

C.1.1 Conditional angle uncertainty

The two-photon angle probability distribution function is given by Eq. (6.4). The con-

ditional angle probability distribution function P(θs|θi; z) is obtained by setting θi = 0

in Eq. (6.4). As we are interested only in obtaining the near- and far-field scaling of the

conditional angle uncertainty, we take P(rs, θs, ri, θi; z) = P(rs, θs, θi; z)δ(rs − ri). Thus we

write Eq. (6.4) as

P(θs, θi; z) =

ˆ

P(r, θs, θi; z)r2dr. (C.5)

Using Eq. (6.3) and the Mathematica software, we evaluate the above integral and obtain

P(θs, θi; z) =
P0

[C + D cos(θs − θi)]3/2
, (C.6)
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FIGURE C.1: (a) Numerically calculated conditional position uncertainty ∆(ys|yi; z) as a function

of z. The two dotted lines show the z-scaling of the uncertainty in the near- and far-field regions.

(b) Numerically calculated conditional angle uncertainty ∆(θs|θi; z) as a function of z. The two

dotted lines show the z-scaling of the uncertainty in the near- and far-field regions.

where

P0 =
|A|2

√
π/2

8
,

C =
1

2

[

1

w(z)2
+

1

σ(z)2

]

,

D =
1

2

[

1

w(z)2
− 1

σ(z)2

]

. (C.7)

The ratio of C and D can be written as

C

D
=

w(z)2 + σ(z)2

−w(z)2 + σ(z)2

=
(w2

0 + σ2
0 ) +

z2

k2

[

1
w2

0
+ 1

σ2
0

]

(−w2
0 + σ2

0 ) +
z2

k2

[

− 1
w2

0
+ 1

σ2
0

] . (C.8)

In our experiments, we have w0 = 507 µm and σ0 = 11 µm. Thus we have w0 ≫ σ0, and

under this approximation we write the above ratio as

C

D
=

w2
0 + z2/(k2σ2

0 )

−w2
0 + z2/(k2σ2

0 )
=

z2 + k2σ2
0 w2

0

z2 − k2σ2
0 w2

0

. (C.9)
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Next, we study the behaviour of P(θs, θi; z) in the near field regions. We make use of the

fact that for θi = 0, P(θs, θi; z) is maximum at θs = 0. Therefore, we have

Pmax(θs, θi = 0; z) =
P0

[C + D]3/2
. (C.10)

We next find the value of θs at which P(θs, θi; z) = Pmax(θs, θi = 0; z)/2, in which case θs

can be taken as the half-width of the conditional angle probability distribution function.

We thus equate

P(θs, θi; z) = Pmax(θs, θi = 0; z)/2

or,
P0

[C + D cos θs]3/2
=

P0

2[C + D]3/2

or, C + D cos θs = 22/3(C + D) (C.11)

Solving the above equation, we get two solutions for θs:

θ
(+)
s = cos−1

[

(22/3 − 1)
C

D
+ 22/3

]

and θ
(−)
s = − cos−1

[

(22/3 − 1)
C

D
+ 22/3

]

. (C.12)

The angle uncertainty ∆(θs|θi; z) can therefore be written as

∆(θs|θi; z) = θ
(+)
s − θ

(−)
s

= 2 cos−1

[

(22/3 − 1)
C

D
+ 22/3

]

. (C.13)

Using the approximation cos−1 x =
√

2(1 − x) for x ∈ [0, 1], we write the above uncer-

tainty as:

∆(θs|θi; z) = 2

√

2(22/3 − 1)

[

− C

D
− 1

]

. (C.14)
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Substituting for C/D from Eq. (C.8), we obtain

∆(θs|θi; z) = 4
√

22/3 − 1 ×
√

z2

k2σ2
0 w2

0 − z2
. (C.15)

In the near-field regions, we have k2σ2
0 w2

0 ≫ z2. Therefore, we can write the angle uncer-

tainty in the near-field regions as

∆(θs|θi; z) ≈ 4
√

22/3 − 1

kσ0w0
z. (C.16)

Thus in the near-field regions the angle uncertainty increases linearly with z. In the far-

field, we use the fact that for θi = 0, P(θs, θi; z) is maximum at θs = π. Therefore, in the

far-filed we have Pmax(θs, θi = 0; z) = P0/[C − D]3/2. Now, proceeding in the similar

manner as above, and using the far-field approximation z2 ≫ k2σ2
0 w2

0, we find the angle

uncertainty in the far-field regions to be

∆(θs|θi; z) ≈ 4
√

22/3 − 1kσ0w0
1

z
(C.17)

We thus find that in the far-field region the angle uncertainty ∆(θs|θi; z) becomes inversely

proportional to z and as a consequence decreases upon propagation. Figure C.1(b) shows

the numerically calculated conditional angle uncertainty ∆(θs|θi; z) as a function of z.

The two dotted lines in Fig. C.1(b) show the z-scaling of the uncertainty in the near- and

far-field regions.





Appendix D

Coincidence measurement with

EMCCD camera

Here we outline how we use an EMCCD camera with a 512 × 512 pixel grid with each

pixel 16× 16 µm2 for measuring coincidence counting. For this, we record 106-107 images

of the SPDC field with an exposure time of 1 ms - 5 ms over a few hours with average

flux of 0.5 - 2.0 photons per pixel. We operate the camera at -60
◦
C with the electron-

multiplication gain of 1000, the horizontal pixel readout rate of 5-17 MHz, the vertical

pixel shift speed of 0.3 µs, and the vertical clock amplitude of +4V. As detailed in Ref. [81,

257], the coincidence count between two pixels or two group of pixels, p and q, of the

EMCCD camera is given by

cpq =
1

N

N

∑
k=1

n
(k)
p n

(k)
q − 1

N2

N

∑
k=1

n
(k)
p

N

∑
j=1

n
(j)
q , (D.1)

where n
(k)
p and n

(k)
q are the number of photons detected at pixel (or pixel group) p and

q, respectively, in the kth image. In SPDC, a signal and idler photon pair gets generated

within a very short time interval, usually of the order of 100 fs, which is much smaller

than the exposure time (1 − 5 ms) of the EMCCD camera. Therefore, in all likelihood,

the signal and idler photons belonging to a pair arrive within the same image. However,
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within the same image, we can also have pairs of photons that are not the same down-

converted pair. These cause background noise and are called the accidental coincidences.

This accidental coincidence count between the pixels (or pixel groups) p and q can be

estimated by computing the coincidence counts between kth and (k + 1)th images and it

is given by (as described in appendix G of Ref. [257])

c′pq =
1

N

N

∑
k=1

n
(k)
p n

(k+1)
q − 1

N2

N

∑
k=1

n
(k)
p

N

∑
j=1

n
(j)
q . (D.2)

Here n
(k)
p is the photon count at pixel (or pixel group) p of kth image and n

(k+1)
q is the

photon count at pixel (or pixel group) q of (k + 1)th image. We take n
(i+1)
q = n

(1)
q for

the last image (k = N). We subtract Eq. (D.2) from Eq. (D.1), and obtain the genuine

coincidences between two pixels (or pixel groups) p and q as:

Cpq =
1

N

N

∑
k=1

n
(k)
p n

(k)
q − 1

N

N

∑
k=1

n
(k)
p n

(k+1)
q . (D.3)

In Eq. (D.3), above, the first term is the coincidences due to down-converted pairs along

with accidental coincidences while the second term is the accidental coincidences.
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[28] J. M. Auñón and M. Nieto-Vesperinas, “Optical forces on small particles from partially

coherent light,” JOSA A 29 No. 7, (2012) 1389–1398. 2



REFERENCES 149

[29] F. Devaux, A. Mosset, P.-A. Moreau, and E. Lantz, “Imaging spatiotemporal

hong-ou-mandel interference of biphoton states of extremely high schmidt number,”

Physical Review X 10 No. 3, (2020) 031031. 2

[30] J. Brendel, E. Mohler, and W. Martienssen, “Time-resolved dual-beam two-photon

interferences with high visibility,” Physical review letters 66 No. 9, (1991) 1142. 2, 10

[31] P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a

bell-inequality experiment for energy and time,” Physical Review A 47 No. 4, (1993)

R2472. 2

[32] A. K. Jha, M. Malik, and R. W. Boyd, “Exploring energy-time entanglement using

geometric phase,” Physical review letters 101 No. 18, (2008) 180405. 2

[33] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical

reality be considered complete?,” Physical review 47 No. 10, (1935) 777. 2, 18, 57, 61, 99,

108

[34] N. Friis, G. Vitagliano, M. Malik, and M. Huber, “Entanglement certification from theory to

experiment,” Nature Reviews Physics 1 No. 1, (2019) 72–87. 2, 99

[35] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,”

Reviews of modern physics 81 No. 2, (2009) 865. 2, 99
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holography with undetected light,” arXiv preprint arXiv:2106.04904 (2021) . 2

[50] G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise

quantum imaging,” Nature Photonics 4 No. 4, (2010) 227. 2, 58, 100

[51] L. Zhang, C. Silberhorn, and I. A. Walmsley, “Secure quantum key distribution using

continuous variables of single photons,” Physical review letters 100 No. 11, (2008) 110504.

2, 73, 100

[52] P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell, “Quantum mutual

information capacity for high-dimensional entangled states,” Physical review letters 108

No. 14, (2012) 143603. 2, 58, 64, 68, 69, 72, 73

[53] J. Leach, E. Bolduc, D. J. Gauthier, and R. W. Boyd, “Secure information capacity of

photons entangled in many dimensions,” Physical Review A 85 No. 6, (2012) 060304. 2,

20, 57, 58, 68, 69, 115

[54] M. Almeida, S. Walborn, and P. S. Ribeiro, “Experimental investigation of quantum key

distribution with position and momentum of photon pairs,” Physical Review A 72 No. 2,

(2005) 022313. 2, 58, 72, 100

[55] K. Chan, C. Law, and J. Eberly, “Localized single-photon wave functions in free space,”

Physical review letters 88 No. 10, (2002) 100402. 8



REFERENCES 151

[56] M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W.

Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,”

Nature communications 3 No. 1, (2012) 1–6. 8, 20, 57, 58, 64, 67, 68, 69, 99, 102, 118, 135

[57] J. Schneeloch and J. C. Howell, “Introduction to the transverse spatial correlations in

spontaneous parametric down-conversion through the biphoton birth zone,” Journal of

Optics 18 No. 5, (2016) 053501. 8, 64, 100, 102, 107, 118, 135
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